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INTRODUCTION
¢
The United States currently utilizes a rather small family of launch

vehiclee (boosters) to support a \'ried spectrum of satellite and spacecraft
programs [1]. These launch vehicles have been carefully designed to
accommodate a wide range of payload configurations. In general, the payload
interfaces with the launch vehicle at a limited subset of candidate structural
"hard" points at the payload launch vehicle separation plane. The latest

example in the series is the STS (Space Transportation System).

It is important that any candidate payload be designed to withstand the
load :nvironment transmitted to the payload from within the shielded payload
compartment. Such environments commonly originate from a static (steady
state) vehicle acceleration, a transient or dynamic event such as rocket motor
ignition, or an acoustical environment. Very often, it is the tramsient
dynamic response behavior of the payload that consfitutes payload design load
profiles; hence, it is important that proper attention be given to the payload
transient response characteristics as influencing major design decisions. As
an example, let us consider the landing of the orbiter (= a delta-wing-
airplane-like module) carrying a certain payload. Obviously, when the orbiter
touches the ground it will experience reaction forces. These forces will be
transmitted to the payload through the interface (ife. through the connection
points between the orbiter and its payload). The payload *%-2n, will undergo
elastic displacements. The question is, will the payload be able to withstand
those displacements without being damaged? The answer to this question
requires a dynamic analysis of the booster/payload system as we shall see in
subsequent sections. This dynamic analysis will yield the elastic
dispiacements in the payload due to the known reaction forces on the orbiter.
These displacements can then be used to calculate the internal forces in the
different members of the payload which in turn leads to the calculation of
stresses and strains in those members. Finallv, these stresses and strains
enable the payload designer to determine whether or not the members will be

damaged during the landing event.



T:}resent analytical techniques by which such design loads are predicted are
very costly and time consumingi] A typical i.1d cycle (as the above mentioned

process is called) generally requires:
1. Generation of a payload model;

2. Calculation of the modal characteristics ~f the payload restrained at

the interface;

3. Formation of a transformation to couple the payload to the booster

interface;

4. Coupling of the payload to the booster and calculation of the system

modal characteristics;

5. Calculation of the time response of the system to the specified

forces;
6. Use of the time response results to calculate loads.

The calendar turnarouua time of a given cycle usually is lengthened when
the payload design orzanization, the booster organization and the payload
integration organization are different companies. The reason for this is that
a fair amount of coordination is necessary to make the transfer of information
between those three organizations optimal. Unfortunately, this coordination
is very difficult to establish resulting in considerable time delays.
Moreover, these costs and delays repeat themselves for every load cycle (i.e.,
every time a change is made in the booster or payload). A typical example is
the development of the Viking Orbiter System [2]. Ypward of nine
organizations were responsible for hardware or integration functions which
directly affected the evaluation of dynamic transient loads. The number of
interfaces between those organizations resulted in difficulties in arranging
for the necessary analyses at eaéh organization, ir obtaining the necessary
data, in establishing priorities, in establishing output requirements, and in

correctly transferring data hetween organizations. The time duration for one



load cycle ranged from three to twelve months which depended on the number of
events, forcing functions per event, and complexities of the snalysis. Of
course, if the booster already has its final design, many of these problems
can be avoided. Theoretically, only one transfer of booster data to the

payload organization would be necessary.

It is clear that the need exists for a so-called "shori-cut" methodology

in this area. A "short-cut" method should meet three essential requirements.

1. It should take advantage of the fact that the booster stays the same from
one design cycle to the next or from oue flight to the next. The payload
integrator should be able to reuse several previously calculated booster

quantities (e.g. mass and stiffness matrices, modes etc.)

2. The "short-cut" method should avoid as much as possible the transfer of
information between different organizations involved in the load
analysis. Ideally, the payload organization should be able to estimate
design loads to support their design activities without having to rely on
other organizations. A one-time transfer of booster information should
suffice if the payload integration organization is the same as the payload

organization [2}.

3. A "short-cut" method should be cost-effective. For example, it seems
reasonable that no complete cycle (i.e. item 1-6 on previous page) is
necessary if only small changes are made in the payload. A similar
situation exists in the assessment of STS payload design loads. Although
many of these payloads will be designed for multiple flights with moderate
changes, state of the art dynamic loads prediction technology does not

provide a way to avoid complete reanalysis of the booster/payload system

[1].

The object of this contract then is, to develop and implement such a
"short-cut" methodology. The present Assessment Report covers Study Task I of
the contract. Chapter I presents the standard techniques used to analyze a

payload/booster system. They are '"full-scale" methods in the sense that they



all require the solution of the coupled equations of motion of the
booster/payload system. Chapter II identifies several “short-cut"
methodologies. These already existing techniques do not require the solution
of the coupled system equations. The potentials and shortcomings of each of
these methods is discussed. Chapter III covers the "favored" methods
accompanied by recommendations for further development, refinement and

demonstrations. We also included the outline of a new approach.

/



CHAPTER I: STANDARD TECHNIQUES

1. INTRODUCTION

The objective of this first chapter is to identify and assess the most
prominent standard techniques currently available. This will allow the
introduction of the necessary background information in terms of a unified
nomenclature. It will also provide us with the state-of-the-art full-scale
methodology. Such a method is necessary for comparison purposes. Also, some
of the features of these methods may be incorported into some of the short-cut
methods. This chapter will give us the opportunity to more clearly identify
the requirements of an acceptable short-cut methodology. The first section

deals with the equations of motion in the discrete time domain.

2. THE EQUATIONS OF MOTION IN THE DISCRETE TIME DOMAIN [3,4]

The objective of this section is the derivation of the equations of motion
of the booster/payload system. Figure 1 shows the free body diagrams of the
booster B and the payload P. The booster and the payload are connected to
each other through the interface. Physically, the interface is the collection
of structural "hard" points which the booster and the payload have in common.

Mathematically, this means that the generalized displacement vector {XB }nn the

P

booster side of the interface must be equal to its equivalent {XI

} on the payload
side. Hence

{x?}= {XI;} ’ for all times t ()
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Figure 1 Free-Body Diagrams of Booster B and P« ‘load P



Similarly, the generalized reaction vectcrs{Ri }and {R?} at the interface satisfy,

{R?} = - {Ri} ’ for all times t (2)

From the free body diagrams in Figure 1 we cen easilv write the equations

of motion for the booster B and the payload P as,

0
! x | X F RB
My ! B Ky! B B 1
- S S (R S (i (el (i R ) NED
: FP 0
RP
. I

—_———da

Mp *p £

where {XB} represents the generalized displacement vector of B. This vector

can be partitioned according to non-interface displacements {x:} and

interface displacements { x? } ,

.
h (4)
X = ————
{8} i
I
Similarly for P, P
*N
{’5} R (5)
*1

e s

-~ r

The mass matrix [M“B and the stiffness matrix KB] of the booster B can

e
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. F .
Finally, the vector{ B} represents the externally applied forces on the
boooter B and can be written as

{FB} - (8)

Similarly for P, P

Using Eqs. (4), (5), (8) and (9) we can rewrite Eq. (3) as follows,

“B B B
*N *N N
B f B B, _B
l .
Mpi *1 KBi *1 Fi+ 2
N T s s sy pel A i (10)
! | P
i Mp N | 5p *N N
P P v.P ., P
xI xI PI + RI

Both equations (3) and (10) represent the equations of motion of the
undamped booster B and the undemped payload P. 1In order to derive the
equations of motion for the coupled system (i.e. booster/payload system), we
need to eliminate the a priori unknown reactions{RI; and {RE } . We shall
now establish a convenient and physically meaningful way to éccomplish thie
elimination. To this end, let us solve the third partition of Eq. (10) for

. . P
the non-interface displacement vector {xN }of the payload P.

(- [T D 2 DT (1 TR R D8 )

It is now noted that the non~interface displacement vector {‘xg}consists of
two parts. To understand the physical meaning of these two terms let us
assume that the iuterface Aisplacements are zero i.e. {xi} ={ 0 } . In that
case it follows from Eq. (11) that the second term on the right-hand side can
be interpreted as the non-interface displacement of the payload with respect
to the interface. Let us denote this term by{;g}.lt is then clear that the

first term on the right-hand side of Eq. (11) represents the non~interface



Pl I B VAN "_; v
ORE\‘:)!}h‘.I.I‘— f"l WAL e [ed

OF POOR QUALITY

displacement of the payload due to the displacement {xg} of the interface
only. Therefore, Eq. (11 can be written as )

Wb B ) (3} 1

(%] =~ [“fm]‘l (] (13)

Equations (12-13) are now used to establish the following transformation,

with

() [rodeY N
X xB \OI=O B
B {_ ) ( _ % 1 1 (14)
P { —p
*p \ *N 0 SPE I N
{
xi Lo 110 4

where we used Eqs. (4), (5), (1), (12) and (13). This transformation will
eliminate the redundant set of displacements{xP}in Eq. (10) and in the
process it will also eliwinate the unknown reactionsa {R?}.and{gi }. First, let

us introduce a more convenient notation,

I 010 "1 0! 0 |
[} }
] | N
0 1!0 0o 1! 0 (15)
_..._'.._-_-{—-_ 2 | ————— +———-— = A
| 1
] I
0 sPi I Tl L
0 IO | | i

with

R NN a0
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With this notation we now substitute the transformation Bq. (14) into Zq.

(10) and premultiply by A (T = trauspose). This yields the following result,

“B B R
*N N N
/

T Lo i B b B R PP
M, TN M X, Ky + kTt Tkt |1 R
____________ s e Rl B e | B S

’l‘ ' ll --P 'l ']‘ .[) l)

b1 ' ~ :

IMeTe ¢ IpMpTp ] Io¥pTp + IpKplp ' N "N

(17)

At tliis point a few remarks are in order. First, we shall show that the

matrix product TP] T P is zero. From Eqs. (7) and (16) wc have
T KNN KNI I 0
wl %] [=] - -
[ P p P (18)
P T P P
K
i) L° Sp Ky * Ky
Substituting the exprossion (13) fcr[ SP]ln the lower half of kg, (18) vields,

T

T -1
P P P P P ] [ P ]
= - +
[Sf] [KNNJ N [KIN]" [KNI] [ N] b%ne Kin

T

because P = P ] -

[th} [KNI KP is symmetric
Secondly, the triple matrix product

[TP ]T [KP] [Tp] - 0 o] [KSN K;I 0 S - 0 (20)
T

P P P
SP I KIN 11 0 I 0 KIN SP + KII

[}

[0] (19)
J

o]

will be zero for a stati:elly determinate interface. Thz interface is
called statically detcrminate wien the number of interface degrees of freedom
18 equal to thz rumber of rigid bouy degrees of freedom of the structurc at
hand. Otherwise, the interface is celled statically indeterminate. To show
that [gIN] [Sp] + {KII] in Eq. (20) is zero for a statically determiunate
interface, let us first state that the numerical values of the elemeants of

this matrix are independent of the dynamical state of the structure. More

10
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specifically, because the stiffness matrix [KP] 1s the same for P at rest
or in motion, we can assume that the structure is in a state of static

equilibrium without changing [KIN] [Sp] + [KII]' Therefore, withcut loss

of generality we consider the equilibrium equation of P under the action of
B B P} P ]
F = - -
{ N } with {FI } {FI } {FN} {o}, 0
] {*} =‘ . (21)
- (RI
or, u81ng the partitioned form of [Kp] Eq. (7), we can write

[KNN] 3":« [KEI.- 2%’{ - M (22)

4
P K" PO (23)
IN. 3N * Il]g"ri ‘3“1%
From Eq. (22) we can solve for { P

N

3 2 KNN] | EKNI] ’ bl [Sp] 3%% (24)

where we used Eq. (13). Substituting Eq. (24) into Eq. (23) yields,

<[K§N] [SP] ¥ [KI;I])zxgi = 311‘1’ g (25)

At this point we should note that wher the interface is statically

determinate no stresses can be set up in P by the interface displacements
xi -1ndeed, for a statically determinate interface the matrix | Sp

becomes a rigid body transformation,>transforming the interface displacements
into equivalent rigid body displacemnts of the non-interface degrees of
freedom of P, Becausc, in addition we assumed that no other torces are acling

on P, it is clear that ; R? is zero in Eq. (25), from which it follows that

(] [se) + [6] -0
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This completes the proof.

Finally, we note that in most ap{lications of interest to *his contract,

P , ;Fi &’ and F? i are nonexistant. For

the externally applied forces j F
closed in the cargo bay and will not be

example, STS payloads will be e

exposed to external forces. Therefore, we write

afda e - ol

Taking into account Eqs. (19) and (27) we can now write the final form of
Fq. (17).

"B B b
] N ] XN N
T 1 ol B T i B
My * TpMpTh i TpMplp *1 N Kp + TpkpTpt O xx{ ] 90
1 T -
T T 2p T —~p
IpMpTp t IpMpTp *N 0 1 IKpT, 1 xy 0

(28)

B
N

{XB}= B (4)
1

represents the gencralized displacement vector of the [ree hooster B.  the
H . . .
vector L contains all non-interface displacements of the booster
B

21 P represents the interface degrees of freedom. Furthermcre, the

in which

vector) "N represents the non—~interface displacements of the payload P with
respect to the interface. The matiices [MB] and [M‘p represent the mass
matrices of the booster and the payload respeétively and [KR] and [Kp]
represent the stiffness matrices. The matrix TP] is a transformation
matrix, characteristic for the payload P. In case of a statically determinate

FB 2 is

interface, [TP] represents a rigid body transformation. Finally, N

12
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the externally applied force vector acting on the booster B. The

. T T
matrices [TP] [Mp] [TP] and [TP] [Kp] [Tp] contribute only to
the interface degrees ol freedom as can be seen trom Eq. (20) and from
P P 7 r
_ o o] [m 1o s n o
i T
['rl,] [Ml,] [1’1,] - Ny - (29)
st MW o 1 0w

P IN 1T J

[Mlz] - [SP]"([":N][SP] +[H;I:>+ [MII,NT [Svj * [Mll‘l]'

T
The matrix [Tp] [MP] [TP] essentially represents the payload mass
T
transferred to the interface. Similarly, [TP] [KP] [?P] represents the

payload stiffness transferred to the interface. Note that when the interface

with

is statically determinate no stiffness is transferred (Eq. (26)). When the
interface is statically indeterminate there are what is commonly called
"constraint modes" [3], i.e. the interface displacements x? not only

induce rigid body displacements in the payload but also strains. These

. . T .
strains cause the triple product [TP] [KP] [TP] to be different from
zZero.

Thin concluden thin section on the equationn of motion of the
hooster/payload systeme Thia matevial will be used to derive several methods

of solution of the equations of motion (28).

3. SOLUTION OF THE EQUATIONS OF MOTION N THE DISCRETE TIME DOMAIN

As stated in the Intrcduction, the objective of this study is to determine
design loads for the payload structure. These design loads are then used to
calculate stresses and strains that would exist in the structural elements
that make up the payload. The stresses and strains allow the designer to
determin. the correct physical and geometric properties of the elements (mass,

stiffness, lengths, cross sections, ctc.) so that the structure does not fail

13
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when subjected to the external forces [FB] . An element loads equation is
N

3F§z=[%][%]§xpi (31)

in which Fe is the load vector of an individual element e of the payload

written as

P, [ke] is the stiffness matrix of the element, and [Te] is the geometric
compatibility transformation. The vector { Xp is the time dependent
displacement vector of the payload satisfying Eq. (28). Consequently, in
order to determine g rF 2 in Eq. (31) we need to solve Eq. (28).

e

The most straightforward approach to determiné'{xp} is to solve Eq. (28) as
a set of simultaneous second order differential equations. There are several
well established response routines that handle such problems (Runge-Kutta,
Newmark-Chn-Beta Numerical Integration, etc.). This Irect approach has the
advantage of simpiicity and accuracy. The obvious drawback is the high
computational cost due to the large number of degrees of freedom used to
describe today's aerospace models. Furthe: a0ore, this method does not take
advantage of the fact that often only saall changes are made in the payload.
Hrwever, this method is still usefui in the context of this study because it
provides ., with reliable results that can be used for comparison purposes

with other methods to be discussed shortly.
G SOLUTION OF THE EQUATIONS OF MOTION BY MODAL AMALYSIS [0,7]

In this se:ztion we shall discuss a technique commonly kno.n as mod:l
analysis. 1..1s approach will lead us to an alternate solu‘’.ion method for Eq.
(28) --1 we shall show that it has some definite advantages over the direct

sol tion of the set of differential equations (28) 4s discussed in Section 3.

We start the process with the homogeneous set of equations extracted from

[ ]{} * (k] {mp} = {0} (31)

the top row of Eq. (3),

14
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Associated with this equation is an eigenvalue problem,
2 ] - }
(-5 [%] * []){es} - {0 (32)

where he vector{ ¢B} represents an eigenvector (mode shape) and wp an
eigenvalue (natural frequency). The solution of this eigenvalue problem
essentially produces a linear transfcrmation marix [‘bB] (modal transformacion
matrix) iu which cach column represents a mode shape of the booster B.  The
main property of this modal transformation is that in the new normal
coordinate system{ 9g( , the equations of motion (31) become uncoupled, i.e.

if we apply the transformation,

| - Ll

to Eq. (31), and premultiply by[ ] we obtain

[%]T[MB][%];HBz + ¢]T[ ][%g % 3 % (34)

where the coefficient matrices of q and ;q % are now diagonal,
' By ° B

] [M][%] <[] (o) o] [n] - []

B
where[?g was normalized with respect to |y ] . Equation (34) can then be
B

KINENTIRN

The obvious advantage of applying the modal transformation Eq. (33) is

(35)

written as

that Eq. (36) now represents a set of decoupled independent second order
differential equations that are easily solved. The price to pay however, is
the solution of eigenvalue problem (32). There are many well established

eigenvalue problem "solvers' availabie (Jacobi, Rayleigh-Ritz, etc.) [5].

The next step is to consider the homogenous equation,

(617 (o] [ St (] ) Du] et - op o

Note that,

o (o] (] DR B o [ <[]
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So that Eq. (37) becomes

EAIES

transformation,

R A |

-2
Wp

where we wrote
-P

3

a
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Kgn] g * % = ; 0 z (39)

In the same way as we did for Eq. (31) we can introduce a modal

W] - [ (3T [ - [4)

] instead of[

matrix ¢N has as columns the

and w%

i E (40)

(41)
to simplify the notation. The modal

cantilevered" mode shapes of the payload P,

has the natural frequencies squared of the cantilevered payload

(i.e. fixed interface) on its diagonal. Using Eqs. (40-41), we can write Eq.

AR CAREEET

Let us now apply the following transformation to Eq. (28),

(39) as

and premultiply by

and (41) we obtaia,

P—]

I+ ¢ PMPTP¢B

T
Ty
}”Z pMpTety

1
_| %s! 4p (43)
=[] |-
1 -P —P
: ¥ ay
Taking into account Eqs. (35)
i
P
1
| oy
2 i
[“’BJ ¢’ KI Tpoy O
-y T | e e e e - - - Y - e
}
!
0 i[u) qN
)
T N
2] (44)
0
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Note that { dg } can be partitioned as follows

; ay E 5 (45)

B

91

Equation (44) as it is, probably does not yield any advantage over a

lirect solution of Eq. (28). However, in most practical applications there is
a possibility of defining a so-called "cut-off frequency”". In these cases a
Fourier series expansion of the force vector F: shows that the energy
content of the high frequency components is small compared to the energy
contained in the low frequency components. Practically, this means that the
response of the structure due to the high frequency content of FN can
often be neglected. 1In this connection it should bg noted that it 1s
relatively difficult to excite the higher modes of the structure to any large
extent, especially whep Fﬁ only contains a few elements (i.e. only a few
application pcints). The idea then is to only retain these modes in Eq. (44)
that have a frequency smaller than the cut-off frequency. This in turn,
reduces the size of Eq. (44) considerably. Experience has shown that the

introduction of a cut-off frequency is a workable concept.

In conclusion, we can say that the introduction of a cut-off frequeancy
leads to a reduction of the size of Eq. (44). Nevertheless, the solution of
Eq. (44) for the modal displacement vector is still costly and again does not
accommodate the special circumstances of small changes in the payload. A more
serious problem however, is the representation of the interface in a model
where a cut-off frequency is used. Indeed, in many cases a significant
portion of the response is lost in the high frequency range due to the fact
that the effect of the payload on the booster has a significant high frequency
content. As will be shown in next section a need arises to improve the

interface representation in the model for the booster. In sections 5 and 6 we

shall discuss two methods that accomplish this.
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5. THE RESIDUAL MASS AND STIFFNESS METHOD [8, 9, 10, 11-50, 51]

As explained in Section 4. in many cases it is possible to define a
cut-off frequency which enables us to truncate the high modes in Eq. (44)
thereby reducing the size of this equation. Obviously, some accuracy in the
response of the structure is lost due to the truncation of these high modes.
This loss of accuracy is especiaily apparent at the interface as we shall
explain shortly. The residual mass and stiffness method, instead of omitting
these high modes will replace them with a set of "residual modes".  The
computation of these residual modes does not require any knowledge of the
payload so that they represent a one-time computation effort not to be
repeated as long as the booster stays the same. In order to determine the

residual modes let us consider Eq. (33)

e} <[]t

which represents the modal transformation for the booster B. Assuming a

cut-off frequency was determined we can partition Eq. (46) as follows

) q
(<[ )2

‘H

- gt
where [¢BJ represents the modes with trequencies less than the cut-oll
frequency and ¢§ those with higher frequencies. At this point one could
neglect ¢g and calculate the response as a linear combination of the lower
mode s [ I,] only. Usually this yields a poor accuracy in the response and the
loads. ’ The reason is that in most practical cases a significant part of the
interface response is produced Ly the higher modes. Indeed, a typical
interface is rather stiff and has little mass, i.e. that locally the interface
has a high frequency content so that it responds significantly in the high
frequency range. In truncating the higher modes the model does not include an
adequate representation of that interface. The residuazl mass and stiffners

method now, proposcs Lo retain the static contribution to the response of those

18
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high modes. This leads to a much better representation of the interface. The

static contribution can be obtained from the following static equation

[%] ;xﬂz - FE (48)

R

derived from Eq. (3). Substituting Eq. (46) into Eq. (48) premultiplying
by [¢B]T and recalling Eq. (35), yields
F

L4 ) - [T s

Because we are only interested in the high frequency part, let us write
Eq. (49) as

Z

(49)

-

Y . T
L L L
[uf ]: ag | % |)F 509
T - 50
o IBEL) B ¢HT 2
1“8 J|| 9B B
So that from the bottom row in Ea. (50) we have

[] o) - [T : o

Finally, let us part1t10n[¢B ]in non-interface and interface partitions,

¢
8] _ | ’sN
[¢B] = |-2N (52)

Z w

-

- W

Substituting Eq. (52) into Eq. (51) we obtain,

51t - T8 il (AT o

In principal we can use Eq. (51) as it is and solve for qg ,

Sl ] T

(54)

"

v Z
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which can be substituted in Eq. (47), yielding

RRCHGIER G

- -

However, it should be noted that for every force component we keep, we add
a degree-cf-freedom to the problem. If for example, {F:} contains many
elements (i.e. many points of application) it may not pay off to use Eq.(55),
i.e. we may as well keep all the modes in Eq. (46). If however FN
contains a small number of elements (for example, in case of 1 landing or a
rocket motor ignition) we can use Eq. (55) as it is, and obtain a much better
response for few added degrees of freedom. However, because the cut-off "
frequency was defined in such a way that all significant frequencies of {FN}

are contained in the lower frequency range L, we can state that the booster

model will adequately respond to { FS} and no significant portion of the

. . . B - .
reaponar will he lost, Therefore, we can omit the term in {"N} in Eq. (53)
. . . 1$
altogether and just keep the intertface part in {“l } . The latter part
. B L B . L. .
in (R, is important hecause {'n } will usually have a significant high

frequency content (after all R? represents the effect of the payload on
the booster and as such contains a wide range of frequencies). Because the
interface usually has a high frequency content (as explained before) {R? }
will induce a response at the interface primarily in the high frequency range
which in turn will be, transmitted to the rest of the booster.
B

On the other hand if {FN } contains reaction elements due to some
external contstraints (e.g. a dock) we wish to retain these elements as well
because they are equivalent to elements of {R?} in the sense that they
repregent the unknown effects of the constraints and also, the interface
between the constraint and the booster usually has a high frequency content

(e.g. connections between booster and dock).
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. ’ B H
Ignoring the term in {FN}' in Eq. (53) '‘and solving for {QB } yields

() ML )

which can be substituted into Eq. (47), yielding

I
-2 T%} ¢q
.kl [LBH]FH H --B. (s7)
{XB} [%3 [¢B] [mB J[¢BI] J} B;
R
-2 i T
H H H '
The term [¢B:][MB ]!:bnl] represeats the residual modes and they

replace tbn] . Also, note that these modes only involve boc-ter quantities

which makes it a one-time computational effort.

Let us now derive the modally coupled equations of motion for the

booster/payload system. First, we substitute Eq. (57) into the top row of Eq.

-2 T 5T
H ‘B H , yielding
(o] ][] ]

e

(3) and then we premultiply by [?

- 29
' L L 1
S s, _[“‘B ]i ] _‘Jb_
B H ut n1t “B T"H H
] 1 .
0 [“’BI][“’B J [%1] R 0 :L“’Bl][ B
I
residual mass T residual flexxbilltv
1. B
_[fﬁ] ________________ v 8
-2 i)
H H H B
[“’BI] [“’B ][¢B ] Ry

Before proceeding, let us consider the homogeneous eguation extracted from

the lower half of Eq. (58)
-2 T
H H H B
+[¢’BI][“’B J[¢’BI] 3RI§= 0 (59)

-4 T
H H H
[¢BI] [“’B ]["’Br]
and solve the following eigenvalue problem
-4 T -2 T
2 H H H H H H
("“R [¢BI] [“’B ] l:““m] * [¢BI] E"B ][¢Bl] ) 3¢R€ = goi (60)

leading to the modal transforwation,

[Rﬂ. ) [¢R]{‘1R} (61)

R

I
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and the properties

RN CY N I YR AT A W C A B

We shall make use of these properties in deriving the modally coupleld
equations of motion of the booster/payload system. To this end let us write
Eq. (28), ‘

)
T, o T . T | |
+ ! ! s
Mp ¥ TpMpTp 1 Tty | St TP "}, ; ]
1 === - r i ===
T LT =p i LT —P
TpMpTp F IpMp Iy *N ) 0. PIpRpIp I %y ) 0

(63)

Let us now introduce the following notations

q; el fu] e’

o [ R [RIBTEE]) -
9r

so that, combining Eqs. (57), (61) and (64) we can write,

fah - [

We now define a transformation similar to Eq. (43)

TN I P __‘l_f_t (66)
~p t-p || —p
n L i N
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| 2T
| | _f§4_9__|
Applying this transformation to Eq. (63) and premultiplying by 0 ! EP J
| '
yields, R
T T O S S 7 TT P! ](
+ e P . )
PaMefs T tyTpMpTpop1 pTpMplpty 9B, et ¢31PKPTP¢84_ Ay
7 N AN vl B e s N e
P b opl T p =p tpir -p|] p
NIttty PN TpMp Tty 1L ay NI TR | Y

(67)

Using Eqs. (35), (40) and (62) we can show that

L]:q
] 1%y | (68)
s | T £

2
[I oJ \ E»I!;] i
+ T.T K I - Y T T |
R sTeTelu i 4aTr et | | % _?-_[TB] iRl T
T ! e I T
P _T H =P ils 2 -P
oy IpMpTpty | I In 0 {[wp] N
L. ]
o8
r I'N
) _fg___?_ (70)
0 ,
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The reasidual mass and stiffness techaique essentially improves the
interface representation in the model where the model is subjected to a

frequency cut-off.

The result Eq,(57) can then be used in any type of modsl synthesis techrique
such as result Bq. (70). Due to this interface improvement it is now possible
to truacate the high booster modes while still obtdining an scceptable
accuracy. As we shall discuss in section 9, the residual mass and stittuess
method turns out to be the most efficient full-scale method curreatly

availabie in the literature.

6. THE MASS AND STIFFNESS LOADING TECHNIQUE [52,10,41]

Another way of improving the interface representation in the booster model
subject to frequency cut-oft is given by a techunique developed by Hruda and

Benfield and is based on Eq. (28! which we repeuat here for convenieace,

I
i TR T, ¢ T ! ) N
+ , |
Mt TeMeTel TeMele £} Xy ] Kt TeNTel O *y | 0
_______ L SO PP AP oo SRS 1 SN PR S
T, . | p boq
v M, T |
pMpTp LoIpM L X\ 0 ! lpkplp N ‘ ‘ 0 ,

(1)

Tastead of solving eigenvalue problem (32) Hruda and Beaficld propess to

solve the following eigenvalue problem,

o't Mo+ TIMLT 1 tO K TTK T ) $! . ()l D
R I T o Tetee] ) Th \ !

yielding the modal iranstormation

{xx} - {¢A] g“*% (79
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Again, the modal transformations (40) and (73) can be combined in

B
N
B - ,
Xp Xg ¢B= 0 dg (
----- B T 74)
I
—] —p ——
Xy X o 1o [P
i N N T
¢é{
Substituting Eq. (74) into Eq. (71) and premultiplying by “‘?";'
yields, 01 ¢y
B
T { W T.T P - i 2 T ‘FN
H ' '
_ ] o' pToMpTpdy || ap L' ay o ' 0
T - =11 = (b __'
P T ! 2=p L, ]
I T ¢'! 1 —P 0
4’NIiM'P P¢BI qQy me] U
(75)

where we used the properties
T T T T 2
M+ ' = ! ¥ ’ = !
] [“ T""PTP] [%] [‘] {%] [KB”PK‘PFP] [“’uJ [ B] (76)
Equation (75) now replaces Eq. (44). The main difference lies in the fact

. T T
stiffness loaded by TPMPTP TPKPTP

interface is loaded with approximate dynamic effects cf the payload. 1In doing

and

that in solving eigenvalue proklem (72), the booster interface is mass and
] respectively; i.e. the booster

so, the new modes ¢é and frequencies w'g will include a good
representation of the i1fterface. This allows us tc reduce the number of
booster modes in Eq. (75) according to the predetermined cut-off frequency.
The disadvantage of this method in connection with the present study is that
eigenvalue problem (72) is dependent on the payload. This means that for
every change in the payload we must solve this eigenvalue problem again
although the booster does not change. This makes the Hruda/Benfield technique
less suitable for our purpcses, However, if the changes in P are small, we

can use the old booster modes as a first estimate to calculate the new booster

modes in a Raleigh-Ritz type eigenvalue problem solver.
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THE COUPLED BASE MOTION TECHNIQUE [ 54,55,56,57]

The coupled base motinn technique as presented in this section does not

yield any immediate advantages over the methods presented in previous

sections. However, it can be used as a starting point for possible short-cut

methods (These possibilities will be investigated in Chapter II).

In

addition, this section will give us the opportunity to develop an alternative

set of equations for Eq. (4).

Indeed, we shall not only use "cantilevered"

displacements for the payload P but also for the booster B, while only the

interface will be free.
2.
B,

b

B
g

with

"[Kﬁu

’

a

g

] [%]

Equation (14) can now be replaced by

*8 | _ I

*p

-

-~

o

=
S B

o

r

=

-

[
o)

The derivation is very similar to the one in section

Let us define a transformation similar to Eq. (12) but now for the booster

(17)
(78)
—3
*N
x? (79)
—P i

Again, this transformation will eliminate the redundant set of

displacements

unknown reations RI

Introducing the notations

J

~ W
tx

: 2 O

|£2]

___-__1____-_
__fi_-i______

—
D

f
1

P

and (R

I

o O
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gx§§ in Eq. (10) and in the process it will also eliminate the
B
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where this time,
r

QIR ORKICRNIERE

Note that [IB] and [IP] have different dimensions.

(81)

. . T
Substituting transformation (79) into Eq. (10) and premultiplying by A

yields,
[ 1 i n . B T
v . T . \ B T 3 ] - B
IMaly! TaMsTs r 0 *N TgKglp ! 0 1 0 *N
——————— 1 HE H TV
[ T 1 T B v T T \ B
I TMT +T + +T K
TgMglgt TgMpTy + TpMpT, 1 TMply Xy 0 1 TEKpTp*TKeTp 1 0 X
- 1 - - N [f SO
| ] ] ]
1 LT 1 T T . =P \ v LT -—P
T
L 0 IPMP P \ IPMPIP xN 0 1 0 [ IPKPIPJ xN
- L.
T,
'
T
= ) "'
0
(82)

Equation (82) replaces Equation (28).

The basic idea for a base drive method is the seperation of the booster

response into two sepa:aie parts

F ’R
(x

|
™

(83)

2
e
2

»
o
[}
»
- o
+
— to
e ——————
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where
,AB F
XN o
B = part due to the action of {FB}»only (84)
*1
and
5
X ]
' B &  part duc to the presence of the peyload (=feedback) o)
X : \8>
1

t

It is clear that vector (82) satisfies

.
o1 | =8 T -8 o
0
IgMpty  IgMpTs N TgKpTs N Iy BE
~B T B oI
TpMply TgMpTy X 0 TEKgTg| 1 % Tp¥Fp

(86)

The solution of Eq. (86) is a one-time computional effort becau=c it only
involves booster quantities. If we now substitute Eq. (83) into Eq. (82) and

take into account Eq. (86) we obtain the following new set of equations

el Tt 0 Y[ [l 0o (W
BMBI \ TBMBTB+TPMP i M, ;?R + 0 |T§KBTB+TPKPT : 0 x?R
_______ 3 p_|). 1 el _

o irer, it U X o0 il

0 0

R e

I, Txe 0

(87)
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where*;?F} and{x?F} are known from Eq. (86)

< i

The second idea of a base drive method is to consider the bottom partition

of Eq. (87) and write it in the following form,

T =p T —P _ T, “BF “BR
[ppip) fgt + [ipkplp) Ay} = '{IP“PTP]( SRR b ) (88)
If one is only interested in the design of the payload, Eqs. (88), (12) and
(83) is all we need, to determine the response of the payload. If{x?R is
known we can "base drive" the payload by the terms on the right-hand side of

V.l) .. 3
Eq. (88) to obtain {XN! . Of course,{x?h} is coupled into the booster
equations in Eq. (87).

As mentioned before Eq. (87) does not yield any immediate advantages, but
as will be discussed in the next chapter, Eq. (88) becomes very useful

BR
if {x; } (= feedback) is small.

Equation (87) can also be written in terms of normal coordinates. To this

end let us introduce the following transformation

—BR —H —BR
. ¢ 1 0 ' O
_fl_- __N. b b _N__
BR I B! BR
x =1 o . 10
I, M BT !
P - Loy P
N o, 0 ¢N q,, (89)

where [¢3]' and [¢$] are obtained from solving the following

eigenvalue problems,

['-‘;fs(ls Ip] +[IBBB]{¢B} = {ol
[ . [Tgye 5 TpTy ] +[TBKT+TPKPTP]]{¢I} fo}

190)

1)
with

(7 i) (21 - £ (680 D) (R0 - Bd )
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T
(7] [T5grerpnr,] (o8] = F1]. o8

— 2
whete agaxn we used the simpler notations [mE] and EMIJ

E“ J and t ;

Substituting transformation (89)

transpose of the square transformation matrix in Eq.

] [TBK T +TPKPTP][¢T] = [m A|

(93)

instead of

into E3. (87) and premultiplying by the
(89) yields the modal

form,
| ~BT T B =BR
I N ¢N IBM'BTB¢I ! 0 N
'r T ' BR
—8l 1. BT ~P
¢1 TBMBIB¢N| I 191 TpMplpty L +
2T 1 i =p
0 oo I.M.T ¢ ' 1 q
i N IpMpTp N (94)
2 BR
[f’n]’ 0.0 In R R o
T T
BR BT T, o JBF BT BF
°f IJ‘ R R T S R e i
™
2 —p * 4 “BF
[_'] Uy oy TptpTp*p 0
8.

A LOAD TRANSFORMATION CONSISTENT WITH MODAL SYNTHESIS TECHNIQUES [Si].

Before presenting the assessment
discuss the topic of determining the
members. As discussed in section 3,
motion of the booster/payload system

vector{xp} g0 that we can substitute

{F )

= [ ][] i

section it will prove productive to
internal structural loads in the payload
the reason for solving the equations of
is the determination of the displacement

this vector into Eq. (31),

(95)

. . . P . ..
in order to obtain the internal structural loads ;Ft } on an individual member

e of the payload P.

"displacement"

In principal Eq. (95) could be used as it is, but this

approach turns out to be very sensitive to inaccuracies in

30



{xp}; e.g. truncating high frequency modes as we did in section 5 could very
' easily lead to erratic loads{Fz}. Heuristically speaking,{xpi ¢ .ntains

three parts, the static displacement, the rigid body displacement aad the

"vibrational' displacement.

Therefore, if one has an error in{xp}one necessarily affect the accuracy
of all three parts. For this reason one prefers the so called "acceleration
method"., Basically this approach is capable of seperating the static and
rigid body parts from the "vibrational®™ displacement. As a consequence one
only makes errors in . e "vibrational” part which often is the smallest part
of the displacerent vector{xp }. Such an "acceleration" approach which is

consistent with modal synthesis techniques was developed by Hruda and

Jones.[53]
Recalling Eq. (79 .e can write
B —P 6
Pt = [T dxph + [1]{x} (96)

so that from Eq. (95) we obtain

fFob = e M0 d 0 + [ 20T ) D) i (97)

From the bottom row of Eq. (82) we obtain
-1 B - =p
{xt - [rpkpTp] (“[Ig“'PTP] fxpb - [1pplp) {XN}> (98)
and from the second row of eq. (82) we obzain
‘ -1 T
B T T T =p T ep
fxpt = [rg¥gTgtTpkpTy) <[TB] {Fs} - [%‘&%]*m* '[TpMpr]{ﬁ,} ) (99)

Expressions (98) and (99) can now be substituted into Eq. (97) yielding an
. P, . . 3
equation for {Fe} in terms of accelerations. Many of the matrix
multiplications involved in Eqs. (97-99) can be simplified by using a unit

load solution, which is a feature of most finite element programs [53]

il



9. ASSESSMENT

The methods as discussed in sections 1-8 are believed to be the currently
nost prominen:ifull—scale methods. Some of these are improvements or
adaptations of previously existing approaches (Hurty, MacNeal, Bamford,
Craig/Bampton, etc.) A study by R. Hruda [11-50] showed that the residual
mass and flexibility approach is the most effective in terms of cost and
convenience. As a test structure, Hruda used two planar trusses cc - ed
together by a statically indeterminate interface (Figure 2.) Five different
techniques were compared to the exact solution, i.e. the solution in the

discrete time domain as discussed in section 3.:

1. Hruda/Benfield Technique (section 6): inertial coupling of truss-2

constrained modes onto free-free modes of truss-1 which was mass and

stiffness loaded at its truss-2 interface degrees-of-freedom by the

interface properties of truss-2.(IMSL)

2. (Craig/Bampton Technique (modal version of Eq. (82)): inertial

coupling of truss~1 and truss-2 constrained modes onto a free-free

modal representation of the interface degrees-of-freedow.(I/F)

3. MacNeal Technique: residual flexibility approach of coupling truss-2
constrained modes onto free-free modes of truss-l which creates
stiffness coupling (residual mass not included).(RFSWOM)

4. Rubin Technique (the residual mass and flexibility technique -

section 5): coupling of truss-2 constrained modes onto free-free
modes of truss-1 which yields only inertial coupling, and, by
consistent application to the mass and stiffness terms in the
equations of motion, yields both residual stiffness and residual mass
terms. (RFIWM)
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5. Rubin Technique but without residual mass contribution for truss-l.

Tne truss problem as illustrated in Figure 2. represents a
planar problem with three rigid body degrees of freedom (two
translational, one rotational). Each pinned joint has two
translational degrees of freedom. The interface is statically
indeterminate because there are six interface degrees of ireedom.
The heavy masses (asymmetric with respect to interface) are added to
produce interface distortion. The forcing function is a ramp
function. (RFIWOM) '

The "exact" recsults, against which all comparisons were made,
were obtained by extracting eigenvalues, eigenvectors, and loads

directly from a finite element discrete/physical model using no modes

at all.

Five different cases we investigated
EXACT: Discrete modal 70 DOF
CASE A: Modally coupled, 70 modes retained (=10GZ)
CASE B: Modally. coupled, 50 modes retained (=712)
CASE C: Modally coupled, 19 modes retained (=46%)
CASE F: Modally coupled, 19 modes retained (=27%)

Hruda used the following comparison values:

Frequencies: percent error against the "“exact" solution.
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Modes: An error vector is formed (YN- ®;) and its norm is
calculated (which is defined as the Root Square Sum of
the elements of the vector); the comparison value is
then defined as the norm of the error divided by the
norm of the base/exact mode. Note that the norms are
based on the modal amplitudes of all degrees of

freedom from the coupled system.

Loads: Loads were calculated at the truss interface on both
the truss-1 and truss-2 joints. A percent error of
the absolute value of the largest (either maximuu or

minimum) value from a given case against the absolute

value of the largest value from the oxact solution.
i.e.
N %
Frequency comparison value = T X 100
|2
. RSS ( L b )
Hode comparison value = x 100
RSS ¢
E
- L
Load comparison value = .JELTT_..EL<X 100
E

where E=Exact, and N=Case being compared.

The results are presented in Tables 1-12
For the 100X case-A, the MacNeal technique requires the inversion of the
residual flexibility matrix to obtain a "residual stiffness". When
attempting to retain all (100X) of the modes, this residual flexibility
matrix is a function of the interface highest frequency modal amplitudes
which can cause an ill-conditioned matrix (as in the present case). Since
this is an unrepresentative case, it should not be deduced that this is an
unacceptable technique. As can be seen in succeeding cases, where more
residual modes are available, the MacNeai technique falls into line with
other techniques. Note that in cases B,C, and F, in both the frequency
and mode shape comparisons, that the MacNeal and the Rubin technique

without resijual mass are identical, thereby numerically supporting R.
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Coppolino's contention that these two techniques are equivalent for modal
synthesis. In comparing the loads it is seen that the MacNeal column for
case~A reflects the propagation of the ill-conditioning mentioned
earlier. Loads were calculated by the modal acceleration technique

(section 8) for all methods except for the MacNeal techmique.

Due to the stiffness coupling involved in the MacNeal method,a complete
modal acceleration technique for calculating loads could not be used,
therefore, the modal displacement techniques of calculating loads was used.
Because of this, the larger loads inaccuracies for this method must be

attributed to the method of loads calcula*ion and not to the method it=<elf.

In conclusion we can state that methods 1} through 5 are acceptable.
However, the Rubin Technique (Residual Mass and Stiffness Approach) seems to
outweigh the other appruaches in terms of cost and convenience. Again, it
should be noted that this method does not require any knowledge of payload

properties which makes it very valuable for analysis of STS-applications.

Truss 2
IB':::.' B) (Payload P)

Figure 2 Structure Used for Comparing Coupling Techniques
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Table 1: Frequency Comparison
Case A = 1002 of Available Modes
% Dift for Various Modal Coupling Tech

Mode Exact Freq
No (Hz) IMSL 1/F RFSWOM RFIWM RFIWOM
4 .76 -.00 -.00 ~49,17 -.00 -.00
5 1.75 -.00 -.00 6.75 -.00 .00
6 2.84 ~.00 -.00 ~21.81 -.00 -.00
7 3.08 -.00 -.00 -3.63 -.00 .00
8 3.80 ~-.00 -.00 -9.24 -.00 .00
9 4.62 ~.00 -.00 -16.35 -.00 .00
10 5.1l -.00 . -.00 -24.08 -.00 .00
11 5.50 -.00 -.00 -6.02 -.00 .00
12 5.81 -.00 -.00 -3.31 -.00 .00
13 7.69 ~.00 -.00 -6.08 -.00 .00
14 8.69 -.00 -.00 -.60 -.00 .00
15 9.14 ~-.00 -.00 -3.32 -.00 .00
16 9.42 -.00 -.00 -1.76 -.00 .00
17 £.73 ~-.00 -.00 -.92 -.00 .00
18 9.85 ~-.00 -.00 -.98 -.00 -.00
19 10.36 -.00 -.00 ~1.36 -.00 .00
20 10.43 -.00 -.00 -.35 -.00 .0G
21 10.79 -.00 -.00 -2.99 -.00 .00
22 10.90 -.00 -.00 -2.55 -.00 .00
23 11.37° -.00 -.00 ~1.89 ~.00 .00
24 11.49 -.00 -.00 .80 -.00 .00
25 11.78 -.00 ~-.00 .39 -.00 .00
26 11.96 -.00 -.00 -.12 -.00 .00
27 12.03 -.00 -.00 .19 -.00 .00
28 12.20 -.00 -.00 .40 -.00 .00
29 12.43 -.00 -.00 .12 -.00 0y
30 12.50 -.00 -.00 5.58 -.00 .00
31 12.75 -.00 -.00 4.00 -.00 .00
32 13.29 -.00 -.00 2.54 -.00 .00
33 13.51 -.00 -.00 3.12 -.00 .00
34 14.22 -.00 -.G0 -.19 -.00 .00
33 14.53 -.00 -.00 .31 -.00 .00
36 14,86 -.00 -.00 -.11 -.00 .00
37 15.19 -.00 -.00 1.59 -.00 .0u
38 15.54 ~-.00 -.00 1.23 -.00 .00
39 15.69 -.00 -.00 2.50 -.00 .00
40 16.16 -.00 ~.00 .55 -.00 .00
41 16.17 -.00 ~.00 .66 -.00 .00
42 16.28 -.00 -.00 3.34 -.00 .00
43 16 .86 -.00 ~-.00 .46 -.00 .00
44 17.07 -.00 ~.00 W21 -.00 .00
45 17.17 -.00 ~-.00 5.12 -.00 .00
46 18.17 -.00 ~-.00 .03 -.00 .00

47 18.17 -.00 ~-.C0 10.37 -.00 .00



Table 1:

Case A = 100X v. Available Modes

: “GE 13
ORIGINAL PAGE

Frequency Comparison:(Cencl)

% Diff for Various Modal Coupling Tech

Mode

R e

Exact Freq
No (Hz) IMSL 1/F RFSWOM ~~ RFIWM RFIWOM
48 20.11 ~.00 -.00 .81 -.00 .00
49 22.27 ~.00 -.00 3.02 ~-.00 0N
57 21.11 -.00 -.00 .14 ~.00 .00
51 21.15 ~-.00 -.00 U8 ~-,00 .00
52 21.26 -.00 -.00 .07 . ~.00 .00
53 21.29 ~-.00 -.00 .53 -.00 .00
54 21.45 -.00 -.00 .02 -.00 .00
55 21.47 ~-.00 -.00 2.91 -.C0 .30
56 22.06 -.00 -.00 .45 -.50 .00
57 22.15 -.00 -.00 2.18 -.00 .00
58 22.53 -.00 -.00 5.09 -.00 .00
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Tagle 2: Frequency Comparison
Case B = 71X of Available Modes
% Diff for Various Modal Coupling Tech

Mode Exact Freq
No (Hz) IMSL I/F RFSWOM E* i{WM RF IWOM
4 .76 .00 .00 .00 00U N
5 1.75 .00 .00 .00 .00 v
6 2.84 .00 .00 .00 .00 J2
7 3.08 .00 .00 .00 .00 .06
8 3.80 .00 .00 .00 .00 .00
9 4.62 .00 .00 .04 .00 04
0 5.11 .00 .00 .00 .00 .00
11 5.50 .00 .00 .05 .00 .05
12 5.81 .04 .05 .03 .03 .03
13 7.60 .00 .00 .21 .00 .21
14 8.69 .02 .02 .N3 .01 .03
15 9.14 .04 .06 .12 .04 .12
16 9.42 .01 .01 .01 .00 .01
17 9.73 .01 .02 .02 .01 .02
18 9.85 .03 .04 .03 .03 .03
19 10.3¢ .01 .01 .06 .01 .06
20 10.43 .00 .00 .01 .00 .01
2. 10.79 .03 .05 .04 .02 .04
33 10.90 .03 .03 .04 .02 .04
23 11.37 .00 .00 .03 .00 .03
24 11.49 .00 .01 .05 .00 .05
25 11.78 .03 .03 .08 .03 .C8
26 11.96 .08 .09 .08 .07 .08
27 12.03 .02 .03 .04 .02 04
28 12.20 .13 .13 .10 .10 .10
29 12.43 .01 .01 .02 .00 .02
30 12.50 .03 .09 .07 .03 .07
31 12.75 .07 .07 .08 .06 .08
32 13.29 .04 .05 .06 .02 .06
33 13.51 .03 .07 .07 .05 .07
34 14.22 .13 .13 .78 .09 .78
35 14.53 .09 .13 .29 .07 .29
36 14.86 .01 .01 .17 .01 .17
37 15.19 .06 .07 A1 .05 oil
18 15.54 .01 .03 1.17 .04 1.17
39 15.69 .02 .02 1.61 .03 1.61
40 16.16 .01 .02 .13 .09 .13
41 16.17 .07 .08 2.68 12 2.68
42 16.28 .37 44 3.88 .34 3.98
43 16 .86 3. .12 7.73 .25 7.73
% 17.07 06 .10 18.51 1.52 18.51
45 17.17 1.00 1.00 66.94 .86 66 .94
46 18.17 .02 .02 72.29 9.54 72.29
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Table 2:

Frequency Comparison (Concl)
Case B = 71% of Available Modes
X Diff for Various Modal Coupling Tech

- - - = - s s s e e

Mode Exact Freq

No (Hz) IMSL 1/F RFSWOM RFIWM RFIWOM
47 18.17 .03 .04 122.22 11.51 122.22
48 20.11 .07 .09 473.05 7.55 473.05
49 20.27 31 3 962.70 8.65 902.70
50 21.11 4,07 4.20 536.67 19.40 536.67
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Table 3: Frequency Comparison
Case C = 462 of Available Modes
Z Diff for Various Modal Coupling Tech

Mode Exact Freq
No (Hz) IMSL I/F RFSWOM RFIWM RFIWOM
4 .76 .00 .00 .02 .00 .02
5 1.75 .02 .00 .00 .00 N
6 2.84 .04 .02 .12 .01 .12
7 3.08 .01 .00 .28 .00 .28
8 3.80 .02 .00 .00 .00 .00
9 4,62 Jd2 .05 .26 .02 .28
10 5.1° .02 .01 .01 .00 .01
11 5.5G .26 .10 .35 .05 .35
12 5.81 .16 .24 .12 08 .12
13 7.69 .03 04 1.55 .U6 1.55
14 8.69 .14 .22 A7 .08 A7
15 9.14 .32 .33 L4 .17 4l
16 9.42 .05 .07 .07 .01 .07
i7 9.73 .13 .18 .34 .08 A
18 9.85 .30 .27 .31 .18 RS
19 10.36 .11 .11 .51 12 .51
20 10.43 .09 .04 .45 .02 .45
21 10.79 .17 .33 .73 .11 .73
22 10.90 41 42 3.43 .55 3.43
23 11.3 .06 -04 3.23 1.49 3.23
24 11.49 .04 .11 5.14 3.66 5.14
25 11.78 .17 A7 5.52 2.76 5.52
26 11.96 40 .90 4.79 3.70 4.79
27 12.C3 .30 3.16 53.65 4.71 53.65
28 12.20 1.73 2.35 77.63 3.91 77.63
29 12.43 .4l 4.66 86.30 14.58 80.30
30 12.50 1.94 12.32 143.04 22.38 143.04
31 12.75 3.52 1£.90 167.76 29.91 167.76

32 13.29 11.88 61.19 630.91 63.27 630.19
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Table 4: Frequency Comparisor
Case F = 27% of Available Modes
2 Diff for Varioua Modal Coupling Tech

Mode Exact Freq
No (Hz) TuSL 1/F RFSWOM RFIWM RFIWOM
4 .76 .00 .00 .05 .00 .05
5 1.75 .02 .00 .02 .00 .02
6 2.84 .06 .06 .31 .03 21
7 3.08 .07 .00 4.32 .19 4.32
8 3.80 .03 .01 .03 .00 .03
9 4.62 .18 .14 .71 .08 .71
10 5.11 .05 .03 .03 .01 .03
11 5.50 46 .34 1.64 .49 1.64
12 5.81 1.03 1.13 23.29 4.70 23.29
13 7.69 .14 .16 15.39 8.20 15.39
14 8.69 1.05 1.14 45.28 1.30 45.28
15 9.14 1.20 6.85 84 .48 8.49 84.48
16 9.42 .37 27.17 98.00 27.57 98.00
17 9.73 2.23 36.67 97 .08 36.41 97.08
18 9.85 18.25 37.17 203.74 37.43 203.74
19 10.36 22.07 103.62 279.52 105.23 276.52
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'}Table .t Mode Shape Comparison
Case A = 100 of Available Modes
% Diff for Various Modal Coupling Tech.

Mode Exact Freq
No (HZ2) IMSL I1/F RFSWOM RF IWM RF IWOM
4 14.84 .00 .00 104.09 .J0 .00
5 12.95 .00 .00 92.76 .00 .01
6 13.45 Q9 .00 104.91 .00 .01
7 13.70 .00 .00 94.49 .00 .02
8 12,23 .00 .00 132.95 .00 .02
9 11.21 .00 .00 100.73 .00 .03
10 9.54 .00 .00 153.35 .00 .05
11 8.75 .00 .00 104.39 .00 .12
12 13.25 .00 .00 129.05 .00 .08
13 10.51 .00 .00 186.06 .00 .i8
14 11.49 .00 .00 96.78 .00 .04
15 11.24 .00 .00 102.21 .00 .16
16 14.5 .00 .00 71.19 .00 .07
i7 13.16 .00 .00 141.80 .00 .09
18 13.99 .00 .00 90.01 .00 .02
19 15.47 .00 .00 81.01 .00 .12
20 13.49 .00 .00 99.38 .00 .05
21 12.74 .00 .00 136.40 .00 .13
22 15.25 .00 .00 1358.19 .00 .15
23 16.56 .00 .00 132.20 .00 .15
2% 18.06 .00 .00 100.18 .00 .25
25 17.70 .00 .00 132.72 .00 .18
26 17.29 .00 .00 142.58 .00 .17
27 16.94 .00 .00 68.01 .00 .09
28 17.58 .00 .00 69.89 .00 .03
29 17.06 .00 .00 41.89 .00 .19
30 16.31 .00 .00 138.22 .00 .28
31 15.86 .00 .00 149.30 .00 .01
32 18.16 .00 .00 138.85 .00 .08
33 16 .92 .00 .00 148.49 .00 .11
34 15.21 .00 .00 91.84 .00 .84
35 18.67 .00 .00 75.41 .00 .52
36 18.48 .00 .00 49.75 .00 .36
37 17.23 .00 .00 89.32 .00 .16
38 18.14 .00 .00 145.84 .00 1.36
39 18.12 .00 .00 146 .47 .00 .72
40 18.82 .00 .00 160.19 .00 .51
41 19.22 .00 .00 126.88 .00 .96
42 15.63 .00 .00 162.42 .00 .90
43 18.47 .00 .00 124.22 .00 1.2
44 19.44 .00 .00 61.05 .00 .45
45 16.54 .00 .00 135.41 .00 .84
46 18.17 .00 .00 54.79 .00 .32
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Table 5: Mode Shape Comparison (Concl)
Case A = 100X of Available Modes
X Diff for Various Modal Coupling Tech.

Mode Exact Freq
No (HZ) IMSL 1/F RFSWOM RFIWM RF IWOM
47 18.33 .00 .00 142.35 .00 .30
48 18.25 .00 .00 145.79 .00 2.22
49 19.16 .00 .00 139.28 .00 .27
50 19.29 .00 .00 65.342 .00 2.16
51 19.51 .00 .00 62.72 .00 1.22
52 19.17 .00 .00 52.42 .00 3.43
53 18.89 .00 .00 105.50 .00 4.69
54 19.52 .00 .00 - 38.21 .00 1.48
55 19.13 .00 .00 103.39 .00 2.35
56 11.17 .00 .00 161.11 .00 5.68
57 19.81 .00 .00 11.29 .00 .17
58 19.81 .00 .00 135.33 .00 .09
A
FUREATOICIRINNITE o {
Bﬁé"‘ QOR &P
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Table 6: Mode Shape Comparison
Case B = 71X of Avdilable Modes
X Diff for Various Mddal Coupling Tech.

Mode Exact Freq
No (HZ) IMSL 1/F . RFSWOM RF {WM __RFIWOM
4 14.34 .00 .00 .00 .00 .00
5 13.05 .02 .01 .01 .01 .01
6 13.45 .04 .03 .18 .02 .18
7 13.70 .07 01 .23 .01 .23
8 12.23 .08 .06 .06 .05 .00
9 11.21 W12 .08 .33 .06 .33
10 9.54 .16 .18 .16 .15 .16
11 8.75 .22 .22 .66 .14 .66
12 13.25 .80 .89 ) 70 .76
13 10.51 .30 Al 1.78 .27 1.78
: 11.49 .21 }.21 .88 .57 .88
15 11.24 1.75 2.05 2.53 1.67 2.53
16 14,55 .61 .71 .95 .34 .95
17 13.16 1.02 1.10 1.02 .70 1.02
18 13.99 1.52 1.67 1.63 1.50 1.63
19 15.47 1.28 1.03 1.86 W77 1.86
20 13.49 1.30 1.03 1.21 .75 1.21
21 12.74 1.54 2.02 2.20 1.23 2.20
22 15.25 1.93 1.84 1.98 1.50 1.98
23 16.56 .38 .62 3.31 .12 3.31
24 18.06 .32 .81 3.56 .31 3.56
25 17.70 3.44 3.63 4.94 3.43 4.94
26 17.29 9.71 9.84 8.9, 8.36 8.91
27 16 .94 8.37 8.24 7.18 7.04 7.18
28 17.58 7.16 7.15 6.09 5.94 6.09
29 17.06 1.11 2.22 3.50 .79 3.50
30 16.31 3.83 5.48 5.80 3.52 5.80
31 15.88 3.90 3.89 4.95 3.86 4.95
32 16.16 2.81 2.72 4.45 2.02 4.45
33 16.92 4.06 3.29 3.91 2.92 3.91
34 15.21 6.36 4.34 25.34 4.43 25.34
35 18.67 5.53 5.12 22.71 4.42 22.71
36 18.48 1.64 1.62 16.67 1.79 16.67
37 17.23 4,65 5.05 12.42 3.98 12.42
38 18.14 1.43 2.71 71.43 6.38 71.43
39 18.12 2.45 2.06 189.04 4.32 189.04
40 18.82 35.48 19.60 104.85 60,42 104.85
41 19,22 39.52 27.36 128.81 60.10 128.81
42 15.63 26.78 27.93 126.75 28.17 126.75
43 18.47 9.51 9.90 140.52 38.29 140.52
44 19.44 14,36 15.85 144.04 126.68 144,04
45 16 .54 24.08 24.65 213.55 142.78 213.55
46 18.17 3.25 4.86 150.22 123.17 150.22
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Table 6:

Mode Shape Comparison (Concl)
Case B = 712 of Available Modes

X Diff for Various Modal Couplimg Tech.

Mode Exact Freq

No (HZ) IMSL 1/F RFSWOM RF IWM RFIWOM

47 18.33 4,54 5.77 2530.51 144.13 250.51

48 18.25 62.46 70.50 553.15 77.72 553.15

49 19.16 57.97 66.55 965.00 130.07 985.90

50 19.29 114.23 116.94 930.68 128.01 930.68
ORIGH v
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Table 7: Mode Shape Comparison
Case C = 462 of Available Modes
%X Diff for Various Modal Coupling Tech.

Mode Exact Freq
No (Hz) IMSL 1/F RFSWOM RFIWM RFIWOM
4 14.84 .02 .02 .03 .02 .03
5 13.95 .18 .04 .03 .03 .03
6 13.45 W47 .45 49 .31 49
7 13.70 .31 .10 .55 .13 .55
8 12.23 .54 .23 .18 .16 .18
9 11.21 .1.59 1.30 2.00 .90 2.00
10 9.54 1.10 4 .41 .36 L4l
11 8.75 2.79 3.01 3.61 1.79 3.61
12 13.25 2.50 3.48 2.42 1.79 2.42
13 10.51 1.92 2.35 9.62 2.83 9.62
14 11.49 4,84 7.14 5.19 3.88 5.19
15 11.24 8.72 9.37 8.63 5.92 8.63
16 14.55 3.32 4,77 3.71 1.62 3.71
17 13.16 9.03 90.46 13.85 5.90 13.85
18 13.99 11.17 10.37 13.28 7.67 i3.28
19 15.47 12.62 11.13 68.73 9.12 68.73
20 13.49 13.23 10.81 81.34 7.28 81.34
21 12.74 1.56 16.01 46.68 10.40 46.68
22 14.25 16.60 19.11 54.62 20.68 54.62
23 16.56 6.01 5.57 123.28 97.95 123.28
24 18.06 4,87 9.79 129.15 145.42 129.15
25 17.70 17.82 16.45 135.79 155.65 135.79
26 17.29 68.71 127.43 150.09 124.74 150.09
27 16.94 72.98 144,11 134.45 120.45 134.45
28 17.58 103.74 98.65 152.44 150.49 152.44
29 17.06 81.82 139.33 166.49 128.91 166 .49
30 16.31 110.88 130.70 145.30 111.5% 145.30
31 15.86 95.31 153.24 243.62 141,77 243.62
32 18.16 101.15 122.19 695.80 128.54 695.89
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Table 8: Mode Shape Comparison
Case F = 27X of Available Modes
% Diff for Various Modal Coupling Tech.

Mode Exact Freq
No (HZ) IMSL I/F ___RFSWOM RFIWM RFIWOM
4 14.84 .04 .05 106 .03 .06
5 13.95 .24 .07 .26 .06 .26
6 13.45 .71 .89 2.63 .71 2.63
7 13.70 1.02 .20 8.69 2.36 8.69
8 12.23 .74 .39 1.48 .42 1.48
9 11.21 2.58 2.75 4.62 1.96 4.62
10 9.54 2.84 2.19 1.40 .98 1.40
11 8.75 10.05 9.34 38.19 23.43 38.19
12 13.25 10.96 11.05 65.52 28.35 65.52
13 10.51 7.03 7.59 128.49 53.35 128.49
14 11.49 29.41 33.79 159.45 43.11 159.45
15 11.24 33.59 66.95 167.22 88.27 167.22
16 14.55 30.24 113.08 161.12 119.44 161.12
17 13.16 111.59 138.72 161.33 140.08 161.33
18 13.99 123.87 130.93 148.55 132.90 148.55
19 15.47 148.78 127.29 379.09 127.01 379.09
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Table 9
Comparisons of Maximun Absolute Values of Interface Loads
Case A = 100X of Available Modes

Percent Difference - ABo. Max. Loads

Load No. cxact Load (1lbs) IMSL I1/F RFSWOM RFIWM RFIWOM
1 ~481,999 0. -.00 3419.56 .00 -.05

3 -202.138 0. -.00 10154.67 .00 -.08

5 -498.819 0. .00 3957.31 -.00 .11

7 474.713 0. -.00 2208.71 .00 -.03

9 191.901 0. -.00 22733.86 .00 -.02
11 486 .870 0. .00 17322.92 .00 .03

IMSL = Inertial Coupling W/ Mass and Stiffness Loading
I/F = Interface Method of Inertial Coupling

RFSWOM = Residual Flexibility with Stiffness Coupling, without Residual Mass
RFIWM = Residual Flexibility with Inertial Coupling, with Residual Mass
RFIWOM = Residual Flexibility with Inertial Coupling, without Residual Mass
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Table 10
Comparisons of Maximum Absolute Values of Interface Loads
Case B = 71% of Available Modes

Percent Difference -~ ABS. Max. Loads

Load No. Ex ct Load (1bs) IMSL 1/F RFSWOM RFIWM RF LWOM
i -481.999 .10 -.00 2.08 .10 -.38

3 ~202.138 .26 .27 2.62 .27 .26

5 -498.819 .12 .13 -.13 .14 -.20

7 474.713 17 .15 -1.36 .18 .22

9 191.901 .15 .18 .26 .13 ~.24
11 486 .870 .19 .19 2.00 .24 ~-.10

IMSL = Inertial Coupling W/ Mass and Stiffness Loading

I/F = Interface Method of Inertial Cuupling

RFSWOM = Residual Flexibility with Stiffness Coupling, without Residual Mass
RFIWM = Residual Flexibility with Inertial Coupling, with Residual Mass
RFIWOM = Residual Flexibility with Inertial Coupling, without Residual Mass
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Table 11

Comparisons of Maximum ALsolute Values of Interf. e Loads

Case C = 46% of Available Modes

Percent Differerce - ABS. Max. Loads

Load No.  Exact Load (1bs) IMSL 1/F RESWOM RFIWM RFIWC
1 -481.999 -1.32 -1.29 -4.07 -1.09 .25

3 -202.138 2.34 2.33 3,10 2.43 3.19

5 -498.819 .25 .39 -7.33 45 .17

7 474.713 ~1.48 -1.43 2.93 -1.36 -.34

9 191 901 .00 -.12 -25.44 -.07 ~-1.48
11 486 .870 -.85 -.77 ~3.88 -.78 -.73

IMSL = Inertial Coupling W/ Mass and Stiffness Loading
I/F = Interface Method of Inertial Coupling
RFSWOM = Residual Flexibility with Stiffness Coupling, without Residual Mass
RFIWM = Residual Flexibility with Inertial Coupling, wii_h "esidual Mass

RFIWOM = Residual Flexibility with Inertial Coupling, without Residual Mass
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Comparisons of Maximum Absolute Values of Interface

Takle 12

Case F = 27X of Available Modes

Loaw 3

-Parcsat Difference - ABS. Max. Loads
Load No. [Exact Load (1bs) IMSL I/F RFSWOM RFIWM RFIWOM
1 ~481.999 -2.45 -~ .88 5.38 -6.66 -2.60
3 -202.138 3.04 ~2.85 5.68 -10.99 .27
5 ~-498.819 -2.24 -2.61 8.02 -4.49 -1.85
7 474.713 -3.82 -4.44 10.81 -8.79 -10.32
9 191.901 -2.79 -.54 21.52 -7.54 -14.78
11 486 .870 -.08 -.48 17.0¢ -4.28 -7.60

IMSL = Inertial Coupling W/ Mass and Stiffness Loading
I/F = Intery e Method of lnertial Coupling
FSWOM = Resgidual Flexibility with Stiffness Coupling, without Residual Mass

RFIWM = Residual Flexibility with Inertial Coupling, with Residual Mass

RFIWOM = Residual Flexibility with Inertial Coupling, without Residual Masg
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CHAPTER II: SHORT-CUT METHODOLOGIES

1. INTRODUCTION

In Chapter I we discussed several modal coupling techniques. Al! these
techniques necessitate the solution of the coupled booster/pavlioad equations,
i.e. they are "full-scale'" methods. As we pointed cut before, this solution
is quite expensive, especially if it has to be repedted severai times e.g.
during a design effort. Although mass and stiffness changes du-ing a design
effort are nften small, curvent practices used to design payload structures
- require a new "full-scale" solution every time such small changes in the
payload are made. A similar situation exists in the case of payloads that arc

. designed for miltiple flights with moderate configuration changes.

A necd exists for the development of "snhort-cut" methods. The term

"short-cut” method implies that the method should be able to evaluate small
changes in the payload in a relatively short time. First, a short-cut method
should avoid the direct solution of the coupled equations of the
:ybooster/payload system. Secondly, it should avoid as much as possible the
interfacing between different organizations. This means that one should
‘strife towards as much independence for the payload desigo organization as

possible.

The objective then of Chapter II is to present several of the most
promising of these short-cut methods. Also an assessment of their strengths
arid weaknesses will be made. The first o these methods will be discussed in

the next section.

2. THE PERTURBATION TECHNIQUE

In this section we shall discuss a short-cut method which is based on a
well known perturbation technique. We shall ficst discuss the perturbation
techaique in general terms and then apply it to the particular problem of a

booster/payload systcm.
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Let us consider a set of equations of motion of a cercain structure,
[Mo] {x% + [KO]{ x} = {F}

where [HD] and [K0] are the mass and stiffness matrix of the structure,

respectively. The vectors {x} and {F} are the generalized discrete

(100)

displacement and force vectors. The eigenvalue problem associated with Egq.

(100) can be wr.tten as
2
(w5 D) * [X) ) 14,5} = {0l
(101)

The solution of this eigenvalue problem yields a modal matrix [¢0] and a

diagonal eigenvalue matrix E‘”SJ satisfying

T T ).
[0 [¥100] = 0l (o] (k10651 = Eupd

(102}
Mext, let us assume that the elements >f [Ho] and [Kd] undergo small
changes, so that the new system of equations can be writtem as follow
- {1 .
Mtxt + [x}ixt = {v
DOt « D tad = o) .

with

M) =[] + <[m3. [xk] = [k + «[x] (104)



where t is a small parameter such that

cpm) - e - D). el - kD - ]

Note that the matrix differenres on the right-hand sides of Egqs. (105) are

small, so that it is easy to determine a small € so that [Ml] and [Kl] are

of the same order of magnitude as [M], [MO] and [K], [Ko].

(105)

The objective of the perturbation technique is to obtain a solution for

the new eigenvalue problem associated with Eq. (103)
[ 2
(= 03+ )4t = goy

without actually solving Eq.(106). To this end, .2 us write
Ix}p = Ix } + e {x,} + e2 {x } +
i 7o { 1 2 T

|
fo} = dooh+ cfof + & fo} + ...

2
. = + ..
W wO + € wl + € wz

This can be done because of the small changes in [HOJ and [KOJ as
expressed in Eq. (104). Also,

fab = fop = e dab v < {4

SN I '
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where ! qo}and {q} are the normal coordinate vectors of the unperturbed and

perturbed system, respectively, i.e.

ot = [%]{q‘)!
(1)
i<t = (o7 1al (112)

with
[ - 4T Te . g 2
o170 (6] =E1]. [+ 0xI0e] [X108] = Eu7) .
First, let us substitute Eq. (112) iato Eq. (103) and premultiply by [¢].r
yielding, ’

b+ Be'dta = (017 {e)
(114"

Substituting Eqs. (108), (109) and (110) into Fg. (114) and equating

coefficents of like powers ofz-,'Fe can write,
Y 2 -
{q0§ + [wn] {qo} = L¢0] . {F} (115)
“ 2 -
fa b+ Lop) {ayb = (o] trd -2 Cugd [oad Aol (116)

It is now possible to solve Eqs. (115, 116, etc.) in sequence. The first
Eq. (115) represents the unperturbea equation of motiou, {.e., the modal form

of BEq. (100). This solution is available or can be determined.

Once the vector {q } is determined one can solve Eq. (1167 if [@1] and Bﬂl]
0
arc known. The determinai.on of these matrices is the subject of next

paragraph.
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First, it is always possible to write [¢1} as a linear combination of

the eigenvectors [¢0] )
[4;] = [8) (o]
(117)

because [¢0] is a completz set of vectors (i.e. they cean be used as a basis
for a vector apace). MNote that [u] represents the coefficient matrix

of I_"’UJ in the linear combination and must still be determined. To this
end, let us introduce Eqs. (104),(108), (109) and (117) into Egqs.(113}, and

only keep terms in eo and el,

() + ctog) 1) (0 + o« D93) (Bod * < (o] (o) = O]

([%]. e Dol [a])T ([K°] b [KI]) ( Bol + [¢.>0] [a])=([wo]+ 4@1])(2119)

Equating coefficents of like powers in &p and & we obtain from Eqs.
(118-119), T

() +[e) -6 1] o) 120y
2 o) (] < (2I0e] + (a1 (@) + o) T xd0eg) ()

Equations (120-121) can now be solve for[¢1] and[wl] . This erables us

(118)

to solve Eq. (116) for {ql}, so that from Eq. (110) we obtain the first order

approximation

fa} = oo} + ¢ fa} (122)

cemp vy -
t

9¢ POOR QuAldi 7
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and from Eq. (112) we obtain{ x}where we use

(4] - [46) + €[¢,]

This perturbation technique can now be applied to a hooster/payloaa

(123)

situation. The assumption is thzt only changes of order & are made in the

payload, i.e.

Ped = Dl + e D] 0[] =[] + o [xp]

(124)
where [MPO] and [KPO] are the mass and stiffness matrices of the

unperturbed payload pg, Let us write the mass and stiffness matrices in Eq.

(28) for the perturbed payload P,

- T S T |
Mg + TpMT,  TpMplyp Kg * TpkpTpy O
Py L |- :
T bT v, T (125)
IoMpTp ! IpMplp 0 - TpKpTp
with
-1
0 S
' Op a1 P P
[TP] i [O I] ’ [OP] ) _[KNN] [KNI] (126)
Using Equation (124) we can write [SP] as

(5] = —< ko) + f“f}§]>_1<[!<§‘§]+ exﬁ%) (127)
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and, keeping terms inm ¢ only, we obtain

53 - -(KE;’] Sy (] [x§3]> <n<§g] - [.4;1> (126
- I
. Py Tt -1 ! -
B R (S O N RO T R )
[sp] =1Sp0) * ¢ (5p1] (179)
with _
[‘5|’()] T [Vz(r:] [K:(l)] Cr30)
- - U o
Gd =~ 93] B+ D Tl () () s
It fs now possible to write [Tp] as
) = fpd e [Ted (132)
with
) 0 S LS,
(Tpo) = [0 OPO] N i o L) X 1] (33
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Finally we can write the mass and stiffness matrices of the coupled

booster/payload system as follows

[MC] [MCOJ +o [MC1J : [KC] = [Kcol o [KC}] (36)
where C indicates Coupled. Matrices [Mv] and [KC] are given by expressions
(125). Taking into account Kqs. (124) and (132) we can write

" ,
7 ¥ 0
My + Ty MpT PG | Tpo Mpolpo [k ]=|-B- * Thafealpor T
(Meod = 1 g "1 Lo B
0 T K T
Ipo MpoTro Tpo Mpolro CPOTPOTPO
and
: + I
POMPOTPI*TPOMPlTP0+TPlMPO PO (TPOMPl IPIMPO) PO
[”01] N 'T (136)
: T | .
IPO (MPOTP1+HPITP0) |IPOMP1 PO
0 B
[fet] = | Trofeo"er*Troea o ey KeoTeol 0 (137)
\
T,
0 ' TeopiTpo

where [TPO] and [Tpl] are given by Eq. (133)., Equation (134) is now

equivalent to Eq.

(104) and the perturbation technique can be applied.

Note that theoretically one can also obtain the higher-order

perturbations ,2 ’ L3 , etc,

perturbations sre included.

etc. terms are. It is evident that Eq.

asymptotic expansion in

r"{x.)}" {xt, ete.

59

The question then is, how important

does not break down, i.e.

There are indeed cases where

but for all practical purposes only

9 1

LI

(107) is only valid as long as the

as long as

{xl} ‘Kn}'

such an asvaptetlic oxpansion
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breaks down. It is then necessary to introduge othk=2r perturbation techniques
(e.g. Lighthill, multiple scales, etc). In this connnection it is important
to recognize the fact that small changes in the mass and stiffness of the
payload produce small changes in the eigenvalues and eigenvectors, but not
necessarily small changes in the response. These perturbation techniques show
some promise and will be investigated further as part of Task II Methodology

Development.

3. THE BASE DRIVE TECHNIQUE

In this section we shall discuss the Base Drive Technique as developed by
W. Holland, A. Devers and H.Harcrow. Let us first recall Eq. (87) in

partitioned form,

r OR T —BR _ T, . ] “BR .
[-1;5 MBIB] { N } + [1BKBIB] { Xy } = - [I BMB'IBJ { Xy } (118)
{132

[1§M.PIP] {;:} + {ngplp} {?c:} = - [I:;IJLPTP] ({ x;‘y} . ¥X¥R})

{;BR = [TTM T +'1-'l' . ]—, | Co0y 4 -B¥ T BI°
I BB pMplpl - LlPMPrlP]{xI bo- ["'pr"'p] R

T = . )
- [TPM.PIP] gt - [T;MBIB} {3y [TTK , x )(u.o
I

vhere we solved for{;?R}in Eq. (140).

The payload designer is primarily interested in predicting the response uf

the pay'vad (see Chapter I, section 8.) which is given by

ENCTE

1
4 with I
—Pp —P
N N
S\ BRSO N S (142)
p Ry 1K
® X tox
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where ;ﬁ :and X

R|.

1 | must be computed from, Eqs. (138-140) and} X, :from Eq. (86).
- . . . . L B
The idea of a base drive short-cut method is to approxnmatnlxlg in Ekq.
(140) in such a way as to avoid the solution of the complete set (138-140).

To evaluate a particular short-cut method, the approximation of; I:must be

compared to the exact value given by Eq. (140).

A significant simplification of Eq. (140) occurs when the interface is
statically determinate, 1.,e., when

[TBKBTB] - [Tgl_(PTP] = [o] (143)

o elint R ol BRI, \
This eliminates the dependence of f on d becomes
P i (e le S (““l 11 ’

{;?Ri = {T'II;M T +TPMP1PJ - ( [ ] {x BF [T:MPIP] {x t

J

BR
[ ] ) (144)

A first possibility is to assume that the presence of the payload has no

effect on the response of the booster, i.e. {XBR} = {ofThis approach is called

the Direct Base Drive Technique. Indeed xf{x?Rf = {o}then Eq. (139) becomes

[Ber] 121+ [ (5 = - [rene ] b

(145)
which means that the payload is "directly" driven at its base (i.e. its

interface with the booster B) by the force on the right hand side of Eq. (145).
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Theoretically, the Di-ect Base Drive Technique assumes there is no coupling at

all between the booster and the payload. Practically, it means that{;IR} << {;EF}
or that the feedback of the payload is negligible. The conditions under which

such an approximation is valid is scill an unanswered questicn, The

development of a criterion of validity of the use cf the Direct Base Drive

Technique should be part of Task I1: Methodology Development. This topic

together with some other considerations will be discussed in Chapter IIIL.

4. THE IMPEDANCE TECHNIQUE [71]

In this section we shall discuss yet another approach to the solution of
the equations of motion of the booster/payload system. The Impedance
Technique as developed by K. Payne is basically a full-scale method in the
senge that it does not make any assumptions concerning the size of the payload
nor the extent of the changes made in the payload. However, the method does
avoid a full-scale solution of the coupled booster/payload equations of motion
and is particularly suited to deal with small changes in the payload. The
Impedance Technique ie essentially a Base Drive method (see section 3.). It
differs from the approach in section 3. in the manner in which the interface
accelerationa{;gnfare computed. Indeed, the interface accelerations will be
computed in the frequency domain instead of the discrete time domain thereby
essentially converting a set of differential equations into a set of algebraic

equations.

Let ues now derive the necessary equations. First, recall Eq. (3).

’ 0
- B
-P_‘?.:,_?_ -7 -5.3_,’._-_ -f?-{ - }_f_B- + 21 (146)
\ |
0 i) 1 x 5 ] LR
I

and write the top and bottom partitions separately,

[MB]{XB} + [KB]{XB} - {FB}O+ {2? (147)
] b+ [0] 1ot - | -
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where we invoked Eq. (2) and assumed the external payload forces to be absent

({FP} = ’0}) + Next, we int-oduce an equation similar to Eq. (83),

F R
b = {xb +{xg) (149)
where the F vector represents the booster ..:sponse due to the =xternally

applied force vector{FB} and therefore satisfies,

[uﬂ]{iB}F +[KB]{xB}F = {7} (150)

and the R vector represents the response of the booster due to the feedback of

the payload and satisfies

[MB]{;B} R‘+[KB]{xB} ) -{- Z’I’} (151)

Applying transformation (33) to Eq. (150) yields,
. F F T
2
qu: f-[“’n]%qag '[%] =F3f (152)

We now consider Eq. (149) and recall Eq. (4),

B B . F B}

{"n} R {"N} (153)
T e SR
X1 X1 X1
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Keeping the bottom partition in Eq. (153) yields

F R -
dof - ol 2ol

where we now inclvded the dependence of the vectors on the diacrete time
t. Taking the Laplace Transform (with zero initial conditions) of both sides

of BEq. (154) ard introducing the transformation & = jQ.(withs = Laplace

varinble;Qi = the ith input frequency; and j'\f:?-we can write
B | _ VB | F { B | R
X Q = \ _
r 80§ =xp G9)) 4 Qe G| L 1= L2 (155)

(= number of input frequencie

which represeunts Eq. (154) in the frequency domain. Taking the second time

derivative of Eq. (155) yields

aepf = 13 (Jni>§F + |5 UQi)%R’ L=1,2,... (156)

The basic idea of the Impedance Technique is to calculate the interface
accelerntionlg;g (jﬂi)%in the irequency domain and then transform them back to
the discrete time domain. The two terms on the righthand side of Eq. (156)
will be replaced by algebraic matrix expressiors so that the calculation
of}y ?(j{y) does not involve the solution cf a2 set of differential equatioms.
Let us start with the first term on the right-hand side of Eq. (156). To this

end let us convert Eq. (152) to the frequency domain,

1 |F : T
(%GR [ ‘—7] [°s] Py Gopf 1= L2, (5D
SNy
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or, taking the second time derivative.

PRSI T ]
5 1) |7zl b 3"8 W e, (158)
i B

Let us write Eq. (33) as follows,

B g | LB (159)
X1 1
with
y
¢ = | ===
[B] 4,? (160)

Then the bottom pertition of Eq. (159) reads,
‘8l _ [,B] |
1%1 °1] 198 (161)

: .
Premultiplying Eq. (158) B and invoking Eq. (16}) yields
1

-

“R 1F B Qi ’ -T ‘
;"1 (Jﬂi" = [%] 7.3 [¢B | IFB (jﬂi)i v 1= 1,2,.... (162)
§ BJ B
01
‘..B )F ‘ I
x; (30,) =1A (40 F ‘
|7t [‘ ! i)] |8 (jpi)\, 1=1,2,.... (163)
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. o2 T
B 1
[A (3“1)] - [‘H] 7 2 [%] L L=1,2,....
- w (164)

with

Equation (163) then, yields the first term on the right-hand side of Eq.
(156). The watrix A (391) in BEq. (164) is the trpnsfer admittance from the
points of application of the external forces%FB§ to the interface

accelerations.

Similarily, Eq. (151) can be transformed into
- R 1 {.p
Ixp Qo) = [B S I S L R Y (165)

where this time

- o? T
[B Gap ) = [‘b?] [Q : 2] [4’113] L 1= 1,2, (166)

2
1~ Y

is the metrin of coefficients for the point admittance for the booster at the

interface. Equation (165) yields the second term on the right-hand side of

Eq {.36). However, the reaction vector Ri (jﬁi)g is not known a priori. To

determine this vector let us consider Bq. (148) which represents the paylocd

equations of motion, and write it as

ait 2] [ale le,}_g_l
P
-R’

; e e L
. p'oo P
My ! My l" R | B )

where we used Eqs. (5) and (7). 1Introducing the modal transformation (40) and

o)

{167)

[on e~}

taking into account the properties (41) we obtain from kq. (167)
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5T =p 2} —p
i ! 0
Loeem |, A B I G S
T -
—P P i g P &E (168)
o E : ¥ *1 RN Rt

with

[4] - D] =] + [ %]
(] - 1] [oe] =[]

P
and [%g] given by Eq. (30). Nots that [FZ] is zero wi-2n the interface is

statically determinate.

The top and bottom partitions of Eq. (158) can be written as,

b ][] 1
EAREAIIRm LA RE:

-
P
We shall now assume that the 1nterf1ce ia statxcally determinate ([ ]'l-OJ)

and calculate an expression for% RI {from Eqe. (171-172). First, we transform

Eq. (171) to the frequency domain,

x§§ == :RI;; (172)

2

‘3P Qi 1 T ~p I
l qy GR)¢ = - ;;Eijifi oy [ 1] {XI (jﬂi)‘ v 1= 1,2,.... (173)

P

and from Eq. (172) we obtain,
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P | (174)
g a)|

1 - 1’2!’.!!\!

i o] -

(2] [Z]l& om0

Substituting Eq. (173) iato Eq. (174) yields
2

-[ 1]T [3:;] Q;i P [35] T [Mi] H (jgi)x (175)

+ [Mg] s;P (32,) % = - %RI; (391)} , i=1,2,...

(I

from which we obtain the following expression for {Ri (jgi)€

Ve Gapl = e aop b2 gapl,

| I i I 1 i ‘ i=1,2,.... (176)
where

\ 21 (2 o 2 ]T
[C (jni’] i [1] [°N] 7 =2 [¢N] [1] ‘[2] (177)
17 %

is the impedance matrix of the payload at the payload/booster interface.
Finally, we substitute Eq. (176} into Eq. (165),

. R
:xl (jﬂi){ = [B (jni)] [c (Jni)] 3 (30 ); L 1,2,.... (178)

Combining Eqs. (156),(163) and (178) yields

(- [ ool e emo])

S

(jQ )$ = [A (jni)] gFB (jQi)} (179)

1i=1,2,....
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where we also used Eq. (1)

The coefficient matrix of( xg (jni) in Eq. {179) represents the coupled
impedance of the hooster/payload system, and the right hand! side represents a
pseudo genecalized force. The interface acceleration can now be computed from
Eq. (177) with relative ease.

1f we now consider a new psyload on the same booster snd with the same

force {FB" the right hand side of Eq. (179) does not change so that,

(jni)% (2) ) ([1]- [B (j.ﬂi)] (2‘[c(j Qi)f) -1 [1]- [B (3'91)} 1) [C(jgi)] (1) )

‘ . (1)

x )x (2]
180)
provided the interface does not change. I I 1 ‘ (

The interface accele:ationn%xft)in the discrete time domain can now be
derivec frow Eq. (179) or Bq. (180), using the inverse Laplace Transform. The
payload response then follows frcm Eq. (171).

The approximation involved in the Impedance Technique is im'edded iIn the
transformation to and from the frequency domain. If these t-ansformations
vere sxact, the method of determining ;{t ould be exact. Therefore, one of
the objectives of Task II. Mcthodology Development. shoul. = a detailed
investigation of these transformations. There are also pr: a8 pertaining to

the modal damping when working in the frequency domain.

Although Eqs. (179) and (180) were derived for an undamped statically
determinate sy.tem, it is clear that damping and statically indeterminate
interfaces can be included. For an indeterminate system it becomes necessary
to keep track not only of the interface accelerations but also of the
velocities and displacements at the interfsce. The use of the Fast Fourier
Transform in obtsining the spectral data to be used in Eqs. (179-180) also
presents some problems. In general, howevar, enough ccrrelation with the
exact tine domain solution is apparent to warrant further investigation into

poseible improvements.
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5. THE GENERALIZED SHOCK SPECTRUM TECHNIQUE [72, 73]

The approach presented in this section is a generalized versior of tue

shock spectrum technique as developed by Bamford {r].

In order to explain the basic ideas underlying this technique let us

recall equation (44)

B
TT T.T. ., 2| (" F
T T e o T Lo | (o 2 T.T T ’ Nt
alpMpTp
ARt | R L) ¢ oty o ‘ K
- B S Te U7
T, =p =2 =P
oy LpMpTpéy I A 0 [FP] qa 0
(181)

and let us sssume we retained M modes for the booster (ie [pg] is an MxM matrix)
and N modes for thes payload ﬁct&:-l is an NxN matrix)
J

The basic idea of the shock spectrum technique is to determine load maxima
vittout having to solve Eq. (18.). To reach this zoal, a new model both for
the coupled system and the forcing function ;FB% is introduced.

First, the (¥ + M) modally couplel Eqs. (181) are replaced by (N x M) sets
of two simultaneous equations each of which represents the coupling of one

payload mode with one booster mode, as follows,

T T
R VP T T A L T TR T
1+ *B1, TptpTp ;°e% 1; 1Y , Pe'p 3¢N§ | ] Ipq
=" -
o IR S ! 23
1N ) TpMpTp ;’B{ g 1 J N3
o T FS | (182)
w2 :0 q ’¢ ! 0
P = S i - O GV e % W el 1=1,2,....0
=3
l 0 EwPJ [ s 0 1=1,2,.. .0

r
T
vhere we assumed that the interface is statically determina’e (Lol.TprTp] - [0] )

Secondly, & bound 9,p on each of the (N x M) moda) reaponses of the

payload is established. This is done by introducing a new model for the
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forcing function in Eq. (182). Tue rather complicated forcing function is
replaced by a much simpler function (e.g. an impulsive force) which produces
the same raximum reaponﬂe peak as the original force. Therefore, ar
analytizal solution for both the response and maximum response of Eq. (182) is
possible (after some additional simplifications). Finally, a bound 9p on
the total payload response is constructed bty summing over all the individual
modal bounds dgp \over absolute values or in a root-sum-square sense that
allows for phase weighting). Payload member loads are obtained by adding the
contributic 3 of all payload modal loads.

As stated above, the fcrcing function in Eq. (182) is replaced by a modal
delta function of a certain magnitude FB . This magnitwde FB is evaluated
from an already existing transient analysis of the booster with or without a

dummy payload.

The main objections that can be raised against the Shock Spectrum Approach

are:

1) No critical evaluation is available on the validity of replacing
model (181) by model (182). What effect does this replacement have on the
load bounds? This change of modal could not only result in a too conservative
design but also in an unconservative one. Model (152) not only ignores the
coupling between the B-modes due to rigid body feedback of P , but more
importantly it ignores the effectis that the coupling of one B-mode with one

P-mode has on all the other P -modes.

2) The manner in which FS is calculated again *-~aves the question of

whether or not the envelope values are consecvative or not and by how much.

k)] The ts.hod appears rather complicated and is not simple to use, This
can lead to misinterpretation and confusion when theé method is applied. More

rigor in the mathematical formulation is desirable.
For these and some other minor reasons we do not favor further

investigation of the Shock Spectrum Technique unless a better version appears

that answers our basic objections.
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CHAPTER III: PROPOSED IMPROVEMENTS OF EXISTING SHORT CUT
METHODS - A NEW APPROACH

1. INTRODUCTION

In Chapter I we reviewed and assessed four prominent “full-scale"
methodologies. This allowed us to introduce the necessary background material
in terms of a unified nomenclature. After careful evaluation we can state
that all four methods have their merits. However, the Residual Mass and
Stiffness Mechod appears to be the most efficient general purpose method, as
discussed in section 9 of Chapter I. It is the full-scale method which bes*
describes the booster structure in terms of a minimum number of wodes, given a
certain cut-off frequency for the externally applied force ‘FB%' The fact
that no payload information is required tc obtain the booster model is a very
convenient feature in ccnnection with the present study. Therefore, the same

booster model can be used as long as che booster does not change.

The Residual Mass and Stiffness Method can be used for comparison purposes
when future short-cut methods are evaluated. Moreovecr, most short-cut methods
require a full-gcale "start-solution" before they can be applied, which
demonstrates the need for an efficient full-scale method. Also, some of the
short-cut methods (e.g. Base Drive Method) are based on their full-scale

parent method.

In Chapter II four general short-cut methods have been discussed and
evaluated. Although each of these methods has its own merits, it is believed
cthat none of them is acceptable in their present stage of development to
function 2s a standard short-cut metbod for general use. It 1s the purpose of
this Chapter III to propose several possible improvements of these
techniques. In additica, we also wish to present a new approach. Although

still being developed, this new approach shows great promise.

2. THE BASE MOTION TECHNIQUE

The Coupled Base Motion Technique as exp’ained in Chapter I-7, leads to
the fundamental set c¢f equations (138-140), which we repeat here for clarity

of prementaticnm,
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=B T, { —BR T | {“BR]
[I;MBIB] ;"NR{ * [IBKB*B]I"N } = - [IBMBTB] 1*1 4 (183)

x_: (184)
QII’R} = |rp T+TPMPT:| - (-
- [ITPH'?IP] FNP; - [T'gMBIB] ;ER [ ¥ B TPNp" ] BR) (189)

As mentioned in Chapter I-8, the payload designer is primarily interested

in the response of the payload i.e.,

P i -p
1 SO N e s N
k (186)
P ! P
xI 0 : I ‘ X;
with
—p —p
e SO D
P BF BR
"1 T T (187}
where xNS .nd% B must be computed from Eqs. (183-185) andl I ftom Eq.

(86). The base drive method focuses on Eq. (184) which yields l)ﬁ“ ‘
BR|)

provxdodl 1 $on the right hand side of Eq. (184) is known. The idea is to
produce an expression for XBRi without actually solving the coupled set of
equations (183-185).

First, consider the coefficients of ;:: :md} x; ‘m Eq. (185). These

coefficients represent the ratio of the payload mass and the total vehicle

mass. In many STS applications this ratio will be rather s.aall ( <10%).
Therefore, a first possibility is to ignore these terms in Eq. (185).

Secondly, in many applicarions we can assume a statically determinate

. : T T
interface, -.e.[TBKBTB].[TPx_PTP}-[O], so that Eq. (185) becomes
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' -1
T {=BR
[ TBMBTB+TPMPTP] [TBMBIB] ;1% (188)

Ordinarily, the coefficient matrix of%xN §1n Eq. (188) is not small and
cannot be ignored. A first possibility is to assume thatlxN is small and can
be ignored. This means that the feedback of the payload is not important.
This can be a realistic assumption because the payload is usually small

| “BR

compared to the booster. In this case we can completely ignore'xI iin Ej.
(184) and write

[, 1]+ [ | (=) - - [ | (5]

Equation (189) is now effectively decoupled from Eqs. (183) and (185).
Physically, ignoring the feedback of the payload means that payload and
booster are not modally coupled. The question is, when such an approach is

valid. This is one of the points to be investigated in the future.

A second possibility is to scale the vector{iﬁkgin Eq. (188). 1Indeed, let

us assume a full-scale solution is available for some payload Py Now, some

relatively smallAchanges are made in the payload P} to generate payload P. The

assumption now, is that xN ‘13 not much different from -—BR% i.e.

;-'-BR i-‘-’-BR'
Xy | (190)

1

Bquation (188) for payload Pl can be written as

{7
I

-1
T =BR
- [TBMBTB+T91"P1TP1] [TB“BIB] {’%x }1 , (191)

1
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or

[rheata) {2, = - [FBomarmbatnted] 57, as2)

Taking irto account Eq. (190) it follows from Eqs. (192) and (188) that

J,

I"BR} I SR W el i “BR
1 TgMgT gt TpMpTp TBMBTB+TP1MP1 P]] {"r ! (193)

which yields a scaled value for{x?tho be used in Eq. (184). Again, one
should investigate when such an approac

is valid,

One way to improve the Direct Base Drive approach is to use a perturbation
technique such as the one discussed in Chapter 1I-2. This could at the same
time reveal when a Direct Base Drive is valid or not. Indeed, an asymptotic
expansion of ;E: could reveal the magnitudes of the terms inc¢, 6‘2 ete. It
should then be possible to decide if and when the zero-order term is

sufficient or not to represent the response of the payload.

Another possible route of investigation is given by the modal form of Eqs.
(87), namely Eqs. (94),

. T

2gR —2| |-BR -8 .1, . B |"BR

q z + [w 2q t = - [¢ IMT ¢ ] {q $
g N B | N ¥ BB B'1| |1 (194)
=p 2] {-p [T T “BF [ 8] §-Br
3QN$ + [;P“ au( = | ¥y IPMPTP] ({xI g + ¢I] ng f) (195)

- T ul T

Rl __[2]( R BT, =B | |=BR i1, 2| f=p] (195)
gql 2 T“’1] 3“1 - |4 TB“BIB¢N] )qn i ~ 14 TP"PIP¢N] | N

[T . apl a7
o] ) (W] (e
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“BR
I }13 known in Eqs. (194) and (195) we have a decoupled system of

once {4
equations which can be easily solved. The idea is to start an iterative
process with{E?R}={Q} (i.e. Direct Base Drive) and solve fou{EﬁR} ind{a:f in
Eqs. (194) and (195) which would be eaey to do as mentioned above. These
vectors are now used to compute a new value for{&?ﬁ}from Eq. (196). This
value is then used in Eqs. (194-195) and the process is repeated until a
satisfactory solution is obtained. Hopefully, a fast convergence scheme can
be developed. In the meantime, further research showed that no it~-ation process

i3 necessary and a direct solution is possible. We shall discuss this approach

in a future report.

In conclusion, it can be said that the cet of Eqs. (183-185) or any
equivalent set offer several possibilities for the development of an adequate
short-cut method. The main problem is the development of criteria of validity

for the several assumptions that must be made.

3. THE IMPRDANCE TECHNIQUE

As stated in Chapter 1I1-4, the Impedance Technique is basically a Base
Motion Technique. A set of suitable interface acceierations are given by Eq.
(179),

- \-1
xp (38,)) = [I] - [B (jQi)] [C(jni)] [A(jgi)] {FB(jQi)}l (197)

or, when the booster, booster forces and interface do not change we also have
Eq. (180),

R ) (2) (\ -1
xp (39)) - [1] - [BGa) [C(jni)] (198)
(1> (N (.. l“)
I{ - B(jQi) C(Jﬂi) X; (Jﬂi)’

The Impecance Technique is an exact method, in the sense that the
intarface accelerations given by Eqs. (197-198) are exact. [he approximation
lies in the transformations from the discrete time domain to the frequency
domain and back again, Indeed, problems were encountered with regard to the

modeling of damping and the application of the Fast Fourier Transform.

76



Chibail oo

OF POOR Quislii’?

The outstanding feature of the Impedance Technique is that no assumption
is made as to the size of the payload. Also, the relative ease with which the
interface accelerations are determined is a very attractive property of this
technique., Hewever, further research is neede! in the area of modeling the
damping and in the area of conversion from the time domain to the frequency
domain and vice versa. Also, we would like to investigate the possible
application of a perturbation approach in case the payload and/or the changes

in the payload are small.

4. A NEW TECHNIQUE [74]

In the course of our investigation and evaluation of several short-cut
methods it was noted that many methods involve assumptions and approximations
leading to either doubtful or cumbersome resaits. In addition, it is often
very difficult to assess the effects of those assumptions on the response and

the loads of the booster/payload eystem.

The basic problem is to somehow deal with the coupling effects between
booster B and payload P without solving an eigenvalue problem pert-~ining to
the coupled booster/payloau system. This is a difficult problem indeed. Each
of the short-cut methods discussed in Chapter II addresses this problem in a
different way. However, the proposed solutions invariably lead to cumbersome
mathemsatics and program coding. This observation led us to the development of
a more direct approach which we think shows great promise. This new approach
is easy to understand and easy to implement. It is vased on the work of C. W.
White and B. D. Maytum 04. Although the theory is still being developed we
already can present the basic philosophy.

Let us recall Eq. (28)

B
U VP R VI Te o | o a
MytTpMpTp | TpMply |} % | R T 3 ‘ *B ( ) 0 ‘ 99)

| 1 = ({———
1 t T =p P —p
TeeTe ) Ipthlp | ' Xy O TR | Ky 0
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which represents the set of equations ot motion of the coupled
boo:ter/payload syateﬁ. It is now assumed that a cut-off frequency is defined
based on a Fourier series expansion of F: . Purtiermore, we clso assume
that e.g. the Residual Mass and Stiffness Method was used to construct the

following set of modally coupled equations.

(¢ 24 . T.T !
T+ogT PMPTP¢B | 05T T by ] Efs} + ogToRpTptpt | ag
#e : < ! 0 ;(""']' P
¢N IPMPTP¢B : I qN i Loph 4
B
{7
g L 0} (200)
:‘ ———————
o)
where

- B R B

and the cut-off trequency was used to determine the size of[?Bland[;:l
according to e.g. Chapter I1-5. In other words, the size of Eg. (200) .3
already much less than the size of Eg. (199). Due to e.g. the Residual Mass
and Stifiness Method, the reduced Eq. (200) still represents an acceptable
model for the coupled bcoster/payload system.

The first step of the present approach is to solve the eigenvalue problewm
associated with Eq. {220), namely

~

w2 T,T !

5 I+¢ TPMPTP¢B .¢BTPMPIP¢ N :PBJ T epTpK Tpdy '
- ' T | M=o} (202)
¢u ‘PMPTP¢B ' I 0 £

yielding a set of modes [y ] and a set of ftequenciestga satisfying
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—p) - [\y]*“}
N
(ons)
and
T.T VT T P
[ ’! T IregTptTpoy {‘*’BTPMPIP‘bN [ ] _ [1]
b4 T -+ ¥y =
- PTwre 1 (204)
'y TpMp et ! |
, 2 T.T, . . |
[+] ! E’&._ffﬁfr{‘zfz?b.l _____ ) - [?]
‘e a1 [] " (205)
l_ 0 I[wp

where {u} a:¢ the new normal coordinates., Substituting transfocmation (203)
into Eq. (200) and premultiplying by[%] T and using Eqs. (204-205) we obtain

the uncoupled set of equations,
T T
s B - ]
+ 8 ut = ¥} (-
{ul [ tul (206)

The modal matrix [W] and the frequency matrix [Qzlrepralent the mcdal
information of the couplied booster/payload syatcem. The idss now is to chan-e
the payload and calculate *the changes in [w]ind tggl. In other words, we use
the full-scale solution of Eq. (200) as a "start-solution". This approach is
taren in most short-cut methods and as such does not detract from the present
approach. For example, this full-scale s-lution could be determined at the
beginning of a design effort and would stay the same “or a'l subsequent design

cycles of a particular paylcad.

Let us now consider a new payload Pl, with maes aatrix[KPl]and 1 AR AR T
mntrix[Mpl]-Thia payload Pl could be totally new or just a modifice! = =¥
the nominal payload P, as long as we Live the same degrees of freedom : . bein

payloads © aad Fi. For this new payload Pl, we rer'ace Eq. (199) by
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KERRIRG

is the new transformation matrix and

}_fBl_

Il

xN

is the new ¢ysi2m displacement - -ctor.

Let us now writs Eq. (207) as follows

|
T R VR N
Mgt ToMpTn gy | ‘pﬁr‘r*mgg] ,_xn1

where

m'BB] N {Tgl"m_'fpl]

e

- -
= T ’ i -
mBP] [Tpth*‘Plj

T T T -
LIPHPTP+mBP | Tr”P“P+mPPj R

T .q
[
-

. ol
K +To K. T.. | 0 N
KptTp1Xpy Ty ! ) ! 0
l vT —Pl T
0 Ve o Te I 0
{
T +k ! 0 x
Kp*TpKplptépp ! BL
]
T -71
0 fIPKPIP+kPP N
B1
N
0
c
T T ]
- T -
[('21M91 To"p) Tpl

[T"EMPIJ
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o - d TA .
Y _ |+T T
"pp IP]MPIIP]J ‘ ,IP“pIp] - [Ip (Mp, - M) IPJ (213)
P K I
kg | = |Tes®paTea| = |To%pTe (214)
' EFR e |
lkyp] = LIlepllPl - LI.PKPIPJ = [IP (KPl - Kp) IP] (215)
- | 9

Note that in case the interface is statically determinate kBB - [()]and
if in addicion the geometry of the payload is not changed the TPJ='[TP1 and
i

7] 7
= 1T (216)
[mBB LTP Mpy - M) Ty
IS EP (217)
Tgp | = R Mpp ~ Mp) Ip
T i (218)
Zopl = |Tp Mp1 ~ ¥ I
- L .
‘f‘m;] =[o] (219)
[kpp] = [IP (Kpy - Kp) 11:} (220)

Also, note that if no chang2s are made in the mass the right hand side. of
Eqs. (213) and (216-219) become [0] and similarly, if no s:iffness changes are
made we hzve fiom Eq. (208) th!t[Tp]= [Tp]_]lnd congequently Eqs. (216-219) are
valid while Eq (220) becomes[kPP = [0] elthough the interface can still be

statically indeterminate.
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Next, let us define the following transformation

X %3, ° 95y | HEE
Y e Ve f f} p1 {221)
N O ay a5

After substituting Eq {221) into Eq. (210) and premultiplying by [A]T we

obtain the set of equations that now replaces the set Eq. (200)

LTt T \ I.T, .2, T P -
T+ TpMpTpop 0 pTnp?s 1 *R P PN 5 pp N _Egg_l
T T I | e
P 2’ T . =p1 |
¢y TpMpTpoptey mppts | THy Tpply Iy
I ;Fglz
2 T,.T T 0 ‘ T
. fupd +opTpKpTpdg o pkypty ; i dgy | _ ) ey 07
T
-27 =P, P || =1
0 |th] +oy kppfy | W 0

(222)

The next step is to define the transformation

’["’} ;‘uz (223)

-
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The trmcfom%’ion (223) is now substituted into Eq. (222) after which we
premultiply by[\r and invoke propertiee (204-205), yielding

i
T I T —p
[IJ o Lo 17 108%e%s) *a7spty 3 g
R 1 T ¥ Ul
P e
N s> | N Tpply
B1
ek o | T M
(] D] P [ - 7 e
. LT 1
\ O 1 by kppty 0
(224)
This Eq (224) replaces Eq (206). For convenience, let us denote
BR: (T = |
ol = ry] T 1 ¢pugpts 1950y
L 2Tr P [w]
B Tgpdpl by Tppdy } (225)

T | 0 -
[k] = [w] ! *ssa’s, v] (226)
x 0

| pT  —p
| I oy kpply

Matrices [M] and [k} represent .ne perturbations in the mass and stiffness
matrices fI] and Bﬁof system (206). At this point, several observations can
be made. First, it should be noted that it is very possible that certain
changes in the payload will only affect a limited number of modes and
frejuencies. This means that several columns in[¥] and corresponding
elements inf(ﬂwill not change after the changes in the payload are made.

This reduces the size of Eq. (224). Secondly, in solving the eigenvalue
problem associated with Eq. (224) it is possible to use a Rayleigh-Ritz
approach with EIJ as the estimated start modes. The smaller the changes in
the payload the better estimate m will be and the less iteratiors will be

necessary to produce the new modes and frequencies of the perturted hooster
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B/Payload Pl aystem. An even better starting set of modes could be the
solution to the perturbed eigeanvalue protlem vith all off-diagonal terms equal
to zero (this is equivalent to the first term in a Taylor saries expaansion of
the perturbed system modes and frequency} Thirdly, we wish to investigate the
possibility of trunca.ing modes in[W¥] =2cccrding to the initially defined
cut-off fiequencv. If this wss possible Eq. (224) could be reduced in size by
approximately 50% compar:d to the already reduced system Eq. (200). This
reduction would be ia addition to the one due to unaffected modes as mentioned
above, However, this question must still be carefully investigated. Finally,
it is also possible that the modes are groupud in subsets which show very
little or no coupling between each other. This means that the eigenvalue
problem associated with Eq. (224) can be replaced by two or more smaller

eigenvalue problems, vhich of course reduces the computation time.

There are additional advant 'g2s to this method: simplicity of use;
accuracy of resuvlts (e.g. this method could even be used as a full-scale
method); possibility of using engineering judgement and experience; the
possibility to identify changes required to meet certain frequency
requirerents; the pcssibility to change branch frequencies to decouple the
load problem leading to smaller eigenvalue problems, the potential for

significant computational time savings.

Note that it is also possible to solve eigenvalue problem Eq. (202)
for the perturbed system, using the coupled mudes of the unperturbed system

as a first guess in a Rayleigh-Ritz type solution.

Finally, we will investigate the possible combination of this technique
with the Base Motiorn Approach.

5.  CONCLUSION

The purpose of this report is to define existing methodologies, evaluate
their effectiveness In analyzing dynamically coupled structural systems, ard
to define an approach where a "short-cur" methodology may be derived in Study

Task 1I. This goal was definad within our proposal:
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"Our approach to validation of existing "short-cut" methodologies will
be to disect the accepted state of the art mathematical Jdescription of
a coupled payload/booster system to identify tr- various interactive
torces that arise as a result of that couplin, The merits ot each
methodology will be judged upon the degree to which they represent these
interactions and in relation to the costs (in elapsed time and computer

dolla-s) required by the method".

The previous chapters have definitized the problem by reviewing full
scale methodologies (Chapter 1), assessment 0. streagths and weaknesses of
defined "short-cut" methods (Chapter I1) and our proposed approaches to define

an accurate and useable "short-cut" methodology.
g

fhe following critical comments reflect detulled evaluations of the
reviewed techniques. It should be noted only sensory mathematical studies
were conpleted on these methods. During evaluation of derived techniques.
Study Task l1I, these methods will be reassessed with respect to the newly

derived technijues.

Perturbatica Technique

The driving principal of tt 3 technique is that small chenges in the
aa88 and stiffness results in small changes in the modal characteristics.
However, *his is not a sufficient mathematical premise to assure small
changes in the response. This method .hows some promise and will be

{ncluded within the methodology development of Study Task II.

Base Drive Techniqua

Analytically the Base Drive Technique assumes ne coupling between the
payload and launch vehicle. The principal rhort coming of this method is
a lack of adequate definition that this "structural feedback" is negligible.
The development of this criteria is planned in Study Task II.

Impedance Techuique

This technique is similar te a base drive method with the uuknowm

cciteria involving frequency transformations. This technlque wiil ve checked

8%



out through application to a perturbation technique in Study Task III, but
will not be seriously considzred during Study Task II.

Generalized Shock Spectrum Technique

The assumption that the total response for a single coupled mode can
be related by coupling a single payload mode with an associate booster mode
is questionabie. Although the applied forces are replaccd by modal delta
functions, Lt is not clear to the author that this would assure couscrvatlive-
ness. In fact, our opinion 1s that these model changes could result in
either 1 too conservative or unconservative design. The application of a
generalized force even though based on historical data is d*2l.-ult to assure
proper conservativeness. Utilizing these forces may eliminate frequeacy
dependence of the force but what direct influence this has on the
dynamic response is unanswered. Additionally, due to the numerous mathe-
matical assumptions, more rigor in the mathematical formulation is required.
The generalized shock spectrum technique could be useful “n situations where
weight considerations are not crucial (e.g., static buildings in an earth-
quake analysis) or dynamic situations, ar a first approximation in conjunc-
tion with a more sophisticated method. T -: technique will be reassessed
during Study Task III, but will not be seriously considered during Study
Task II.

Planned Activity

The detailed study plan has been revised and s included as Figure 3.
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